login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298078
a(n) = 7*n^2 - 7*n - 43.
2
-43, -29, -1, 41, 97, 167, 251, 349, 461, 587, 727, 881, 1049, 1231, 1427, 1637, 1861, 2099, 2351, 2617, 2897, 3191, 3499, 3821, 4157, 4507, 4871, 5249, 5641, 6047, 6467, 6901, 7349, 7811, 8287, 8777, 9281, 9799, 10331, 10877, 11437, 12011, 12599, 13201, 13817, 14447, 15091, 15749, 16421, 17107
OFFSET
1,1
FORMULA
From Colin Barker, Jan 14 2018: (Start)
G.f.: -x*(43 - 100*x + 43*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. (End)
E.g.f.: 43 + exp(x)*(-43 + 7*x^2). - Stefano Spezia, Oct 17 2019
MATHEMATICA
Array[7 #^2 - 7 # - 43 &, 48] (* Michael De Vlieger, Jan 11 2018 *)
LinearRecurrence[{3, -3, 1}, {-43, -29, -1}, 50] (* Harvey P. Dale, Jul 05 2021 *)
PROG
(PARI) Vec(-x*(43 - 100*x + 43*x^2) / (1 - x)^3 + O(x^60)) \\ Colin Barker, Jan 14 2018
CROSSREFS
Cf. A272077.
Sequence in context: A033363 A187088 A127147 * A291494 A051614 A291479
KEYWORD
sign,easy
AUTHOR
Charles Kusniec, Jan 11 2018
STATUS
approved