login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 7*n^2 - 7*n - 43.
2

%I #58 Jul 05 2021 11:59:17

%S -43,-29,-1,41,97,167,251,349,461,587,727,881,1049,1231,1427,1637,

%T 1861,2099,2351,2617,2897,3191,3499,3821,4157,4507,4871,5249,5641,

%U 6047,6467,6901,7349,7811,8287,8777,9281,9799,10331,10877,11437,12011,12599,13201,13817,14447,15091,15749,16421,17107

%N a(n) = 7*n^2 - 7*n - 43.

%H Colin Barker, <a href="/A298078/b298078.txt">Table of n, a(n) for n = 1..1000</a>

%H Charles Kusniec, <a href="/A298078/a298078.jpg">Modularity Study For U(L;C)=7L^2-7L-43</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F From _Colin Barker_, Jan 14 2018: (Start)

%F G.f.: -x*(43 - 100*x + 43*x^2) / (1 - x)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3. (End)

%F E.g.f.: 43 + exp(x)*(-43 + 7*x^2). - _Stefano Spezia_, Oct 17 2019

%t Array[7 #^2 - 7 # - 43 &, 48] (* _Michael De Vlieger_, Jan 11 2018 *)

%t LinearRecurrence[{3,-3,1},{-43,-29,-1},50] (* _Harvey P. Dale_, Jul 05 2021 *)

%o (PARI) Vec(-x*(43 - 100*x + 43*x^2) / (1 - x)^3 + O(x^60)) \\ _Colin Barker_, Jan 14 2018

%Y Cf. A272077.

%K sign,easy

%O 1,1

%A _Charles Kusniec_, Jan 11 2018