login
A108278
Numbers k such that k^2-1 and k^2+1 are semiprimes.
8
12, 30, 42, 60, 102, 108, 198, 312, 462, 522, 600, 810, 828, 1020, 1050, 1062, 1278, 1452, 1488, 1872, 1950, 2028, 2130, 2142, 2340, 2790, 2802, 2970, 3000, 3120, 3252, 3300, 3330, 3672, 3930, 4020, 4092, 4230, 4548, 4800, 5280, 5640, 5652, 5658, 6198
OFFSET
1,1
COMMENTS
Subsequence of A069062. - Michel Marcus, Jan 22 2016
Subsequence of A014574. - Robert Israel, Jan 24 2016
LINKS
EXAMPLE
a(1)=12 because 12^2-1=143=11*13 and 12^2+1=145=5*29 are both semiprimes.
MAPLE
filter:= n -> isprime(n+1) and isprime(n-1) and numtheory:-bigomega(n^2+1)=2:
select(filter, [seq(i, i=2..1000, 2)]); # Robert Israel, Jan 24 2016
MATHEMATICA
Select[Range[7000], PrimeOmega[#^2 - 1] == PrimeOmega[#^2 + 1]== 2 &] (* Vincenzo Librandi, Jan 22 2016 *)
PROG
(Magma) IsSemiprime:=func< n | &+[k[2]: k in Factorization(n)] eq 2 >; [ n: n in [4..7000] | IsSemiprime(n^2+1) and IsSemiprime(n^2-1) ]; // Vincenzo Librandi, Jan 22 2016
(PARI) isok(n) = (bigomega(n^2-1) == 2) && (bigomega(n^2+1) == 2); \\ Michel Marcus, Jan 22 2016
CROSSREFS
Cf. A001358 (semiprimes), A069062 (k^2-1 and k^2+1 have the same number of divisors), A014574 (average of twin prime pairs).
Sequence in context: A328411 A333840 A145470 * A364975 A298077 A135502
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, May 30 2005
STATUS
approved