login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297358
Numbers m such that the denominator of m/rho(m) is 3, where rho is A206369; i.e. A294649(m) = 3.
0
4, 14, 20, 84, 280, 672, 3360, 4200, 4214, 6160, 25284, 36960, 46200, 57792, 76160, 84280, 92400, 202272, 288960, 308700, 656640, 1011360, 1142400, 1264200, 1854160, 2469600, 3178560, 11124960, 12566400, 13906200, 22924160, 27812400, 107557632, 120165120, 212385600
OFFSET
1,1
COMMENTS
The least instances for 4/3, 5/3, 7/3, 8/3, 10/3 and 11/3 are: 4, 20, 14, 672, 3360, 36960.
Then candidates for 13/3 and 14/3 are 54269201896764616671660406473798293913600000 and 23101697828019582727957348094429256309828763084415991060514234912131560924774400000000.
EXAMPLE
4 is a term because 4/A206369(4) = 4/3.
14 is a term because 14/A206369(14) = 14/6 = 7/3.
MATHEMATICA
Select[Range[10^5], Denominator[#/(# DivisorSum[#, LiouvilleLambda[#]/# &])] == 3 &] (* Michael De Vlieger, Dec 29 2017 *)
PROG
(PARI) rhope(p, e) = my(s=1); for(i=1, e, s=s*p + (-1)^i); s;
rho(n) = my(f=factor(n)); prod(i=1, #f~, rhope(f[i, 1], f[i, 2]));
isok(n) = denominator(n/rho(n))==3;
CROSSREFS
Cf. A206369 (rho), A294649, A295236 (analog with 2 instead of 3).
Cf. A245775 (analog for sigma).
Sequence in context: A075319 A030470 A326004 * A267768 A185008 A165721
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 29 2017
EXTENSIONS
a(33)-a(35) from Jinyuan Wang, Feb 10 2020
STATUS
approved