The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297355 Primes p for which pi_{12,5}(p) - pi_{12,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m). 2
 25726067172577, 25726067172857, 25726067173321, 25726067173441, 25726067174389, 25726067174461, 25726067174653, 25726067174761, 25726067175961, 25726067176549, 25726067176669, 25726067176993, 25726067177149, 25726067177429, 25726067177449, 25726067177593, 25726067177617, 25726067177689, 25726067177801, 25726067178013 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is a companion sequence to A297354 and includes the first discovered sign-changing zone for pi_{12,5}(p) - pi_{12,1}(p) prime race. The full sequence checked up to 10^14 has 8399 terms (see b-file). LINKS Sergei D. Shchebetov, Table of n, a(n) for n = 1..8399 C. Bays and R. H. Hudson, Details of the first region of integers x with pi_{3,2} (x) < pi_{3,1}(x), Math. Comp. 32 (1978), 571-576. C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias, J. Number Theory 87 (2001), pp. 54-76. A. Granville, G. Martin, Prime Number Races, Amer. Math. Monthly 113 (2006), no. 1, 1-33. M. Rubinstein, P. Sarnak, Chebyshev's bias, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197. Eric Weisstein's World of Mathematics, Prime Quadratic Effect CROSSREFS Cf. A007350, A007351, A038691, A051024, A066520, A096628, A096447, A096448, A199547, A297354. Sequence in context: A104834 A350363 A289149 * A297357 A080124 A121843 Adjacent sequences: A297352 A297353 A297354 * A297356 A297357 A297358 KEYWORD nonn AUTHOR Andrey S. Shchebetov and Sergei D. Shchebetov, Dec 29 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 21:17 EST 2023. Contains 360045 sequences. (Running on oeis4.)