login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p for which pi_{12,5}(p) - pi_{12,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
2

%I #8 Jan 22 2018 18:49:21

%S 25726067172577,25726067172857,25726067173321,25726067173441,

%T 25726067174389,25726067174461,25726067174653,25726067174761,

%U 25726067175961,25726067176549,25726067176669,25726067176993,25726067177149,25726067177429,25726067177449,25726067177593,25726067177617,25726067177689,25726067177801,25726067178013

%N Primes p for which pi_{12,5}(p) - pi_{12,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).

%C This is a companion sequence to A297354 and includes the first discovered sign-changing zone for pi_{12,5}(p) - pi_{12,1}(p) prime race. The full sequence checked up to 10^14 has 8399 terms (see b-file).

%H Sergei D. Shchebetov, <a href="/A297355/b297355.txt">Table of n, a(n) for n = 1..8399</a>

%H C. Bays and R. H. Hudson, <a href="https://doi.org/10.1090/S0025-5718-1978-0476616-X">Details of the first region of integers x with pi_{3,2} (x) < pi_{3,1}(x)</a>, Math. Comp. 32 (1978), 571-576.

%H C. Bays, K. Ford, R. H. Hudson and M. Rubinstein, <a href="https://doi.org/10.1006/jnth.2000.2601">Zeros of Dirichlet L-functions near the real axis and Chebyshev's bias</a>, J. Number Theory 87 (2001), pp. 54-76.

%H A. Granville, G. Martin, <a href="https://www.maa.org/sites/default/files/pdf/upload_library/22/Ford/granville1.pdf">Prime Number Races</a>, Amer. Math. Monthly 113 (2006), no. 1, 1-33.

%H M. Rubinstein, P. Sarnak, <a href="https://projecteuclid.org/euclid.em/1048515870">Chebyshev's bias</a>, Experimental Mathematics, Volume 3, Issue 3, 1994, pp. 173-197.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrimeQuadraticEffect.html">Prime Quadratic Effect</a>

%Y Cf. A007350, A007351, A038691, A051024, A066520, A096628, A096447, A096448, A199547, A297354.

%K nonn

%O 1,1

%A Andrey S. Shchebetov and _Sergei D. Shchebetov_, Dec 29 2017