OFFSET
1,1
COMMENTS
All terms must be even; otherwise k+3 would be an even number and thus the concatenation of k, k+1, k+2, and k+3 would not be prime. - Harvey P. Dale, Jul 05 2021
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
4567 is prime, so 4 is a term.
MAPLE
dcat:= proc(x, y) 10^(1+ilog10(y))*x+y end proc:
filter:= proc(n) isprime(dcat(n, dcat(n+1, dcat(n+2, n+3)))) end proc:
select(filter, [seq(i, i=2..1000, 2)]); # Robert Israel, Apr 01 2021
MATHEMATICA
Select[2*Range[400], PrimeQ[FromDigits[Flatten[IntegerDigits/@(Range[ 0, 3]+#)]]]&] (* Harvey P. Dale, Jul 05 2021 *)
PROG
(PARI) is(n)=isprime(eval(Str(n, n+1, n+2, n+3))) \\ Charles R Greathouse IV, Jun 12 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
STATUS
approved