The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295236 Hemi-imperfect numbers: numbers such that the denominator of k/A206369(k) is equal to 2. 1
 3, 10, 42, 60, 63, 840, 1260, 12642, 18480, 18900, 18963, 154350, 228480, 252840, 379260, 3458700, 5562480, 5688900, 68772480, 1041068700, 15032156160, 53621568000, 4524679004160, 9812746944000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This is to rho (A206369) what hemiperfect numbers are to sigma (A000203). After 3, 10 and 42, whose quotients are resp. 3/2, 5/2 and 7/2, 373316437260251755241798182764378479569038727298776522806597255168000000 is an instance of a term with quotient 9/2. - Michel Marcus, Dec 17 2017 a(25) > 10^13. - Giovanni Resta, Feb 17 2020 LINKS Douglas E. Iannucci, On a variation of perfect numbers, INTEGERS: Electronic Journal of Combinatorial Number Theory, 6 (2006), #A41. László Tóth, A survey of the alternating sum-of-divisors function, arXiv:1111.4842 [math.NT], 2011-2014. Wikipedia, Hemiperfect number EXAMPLE 3 is a term since rho(3) = 2, so 3/rho(3) is 3/2. 10 is a term since rho(10) = 4, so 10/rho(10) is 5/2. 42 is a term since rho(42) = 12, so 42/rho(42) is 7/2. MAPLE rho:= proc(n) local f;   mul((f^(f+1)+(-1)^f)/(f+1), f = ifactors(n)); end proc: select(t -> denom(t/rho(t)) = 2, [\$1..10^6]); # Robert Israel, Nov 20 2017 MATHEMATICA (* b = A209369 *) b[n_] := n*DivisorSum[n, LiouvilleLambda[#]/# &]; Select[Range[10^6], If[Denominator[#/b[#]] == 2, Print[#]; True, False]&] (* Jean-François Alcover, Dec 04 2017 *) PROG (PARI) rho(n) = {my(f = factor(n), res = q = 1); for(i=1, #f~, q = 1; for(j = 1, f[i, 2], q = -q + f[i, 1]^j); res *= q); res; } isok(n) = denominator(n/rho(n))==2; CROSSREFS Cf. A127724 (k-imperfect), A206369 (rho). Cf. A159907 (hemiperfect). Sequence in context: A009329 A009364 A308951 * A214835 A149059 A129878 Adjacent sequences:  A295233 A295234 A295235 * A295237 A295238 A295239 KEYWORD nonn,more AUTHOR Michel Marcus, Nov 19 2017 EXTENSIONS a(20) from Jinyuan Wang, Feb 15 2020 a(21)-a(24) from Giovanni Resta, Feb 17 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 13 16:22 EDT 2020. Contains 335688 sequences. (Running on oeis4.)