|
|
A297360
|
|
Numbers k such that (2^lambda(k) - 1)/k is prime, where lambda(k) is the Carmichael lambda function (A002322).
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
The corresponding primes are 3, 7, 3, 31, 257, 13, 7, 5, 3, 73, ...
|
|
LINKS
|
Table of n, a(n) for n=1..10.
|
|
EXAMPLE
|
5 is in the sequence since lambda(5) = 4 and (2^4 - 1)/5 = 3 is prime.
|
|
MATHEMATICA
|
aQ[n_] := PrimeQ[(2^CarmichaelLambda[n]-1)/n]; a={}; Do[If[aQ[k], AppendTo[a, k]], {k, 1, 4000, 2}]; a
|
|
PROG
|
(PARI) isok(n) = (denominator(p=(2^lcm(znstar(n)[2])-1)/n)==1) && isprime(p); \\ Michel Marcus, Dec 29 2017
|
|
CROSSREFS
|
Cf. A002322.
Sequence in context: A146867 A068481 A146827 * A216414 A147018 A081883
Adjacent sequences: A297357 A297358 A297359 * A297361 A297362 A297363
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Amiram Eldar, Dec 29 2017
|
|
STATUS
|
approved
|
|
|
|