The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297360 Numbers k such that (2^lambda(k) - 1)/k is prime, where lambda(k) is the Carmichael lambda function (A002322). 0
 5, 9, 21, 33, 255, 315, 585, 819, 1365, 3591 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The corresponding primes are 3, 7, 3, 31, 257, 13, 7, 5, 3, 73, ... LINKS EXAMPLE 5 is in the sequence since lambda(5) = 4 and (2^4 - 1)/5 = 3 is prime. MATHEMATICA aQ[n_] := PrimeQ[(2^CarmichaelLambda[n]-1)/n]; a={}; Do[If[aQ[k], AppendTo[a, k]], {k, 1, 4000, 2}]; a PROG (PARI) isok(n) = (denominator(p=(2^lcm(znstar(n)[2])-1)/n)==1) && isprime(p); \\ Michel Marcus, Dec 29 2017 CROSSREFS Cf. A002322. Sequence in context: A146867 A068481 A146827 * A216414 A147018 A081883 Adjacent sequences:  A297357 A297358 A297359 * A297361 A297362 A297363 KEYWORD nonn,more AUTHOR Amiram Eldar, Dec 29 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 19:51 EDT 2022. Contains 353824 sequences. (Running on oeis4.)