login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296084
a(1) = 0 and for n > 1, a(n) = 1 if tau(n)-1 divides sigma(n)-1, 0 otherwise. Here tau = A000005, sigma = A000203.
5
0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
OFFSET
1
COMMENTS
Also number of numbers of the form i*n with 1 <= i <= n and tau(i*n) = 3 (equivalently, i*n is the square of a prime). - N. J. A. Sloane, Nov 11 2020
FORMULA
a(n) = 1 iff A296082(n) = 1.
MATHEMATICA
Join[{0}, Table[If[Divisible[DivisorSigma[1, n]-1, DivisorSigma[0, n]-1], 1, 0], {n, 2, 120}]] (* Harvey P. Dale, Dec 15 2018 *)
PROG
(PARI) A296084(n) = if(1==n, 0, !((sigma(n)-1)%(numdiv(n)-1)));
(Python)
from math import prod
from sympy import factorint
def A296084(n):
f = factorint(n).items()
return int(not (prod((p**(e+1)-1)//(p-1) for p, e in f)-1)%(prod(e+1 for p, e in f)-1)) if n>1 else 0 # Chai Wah Wu, Oct 14 2023
CROSSREFS
Characteristic function of A284288.
Sequence in context: A100656 A285274 A189081 * A302777 A324828 A332823
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 05 2017
STATUS
approved