login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296087
Numbers n such that there is k < n for which A003557(k) = A003557(n), A048250(k) = A048250(n) and A173557(k) = A173557(n).
3
15265, 27962, 30217, 30530, 45795, 50541, 54379, 54905, 57598, 60434, 61060, 64255, 66526, 72357, 72713, 89585, 90651, 91590, 101082, 101949, 108758, 109810, 120868, 122120, 128510, 136555, 137385, 137883, 138761, 144714, 145426, 149739, 151085, 152633, 161386, 163137, 164715, 166315, 179170, 181302, 181543, 182942
OFFSET
1,1
COMMENTS
Because Euler phi(n) = A000010(n) = A003557(n) * A173557(n), Dedekind psi(n) = A001615(n) = A003557(n) * A048250(n), and because also sigma(n) (A000203) can be computed from those three elements (see A291750), these numbers form also a subset of the positions of such duplicated occurrences of values computed for those functions. See for example A069822 and A296214.
a(11) = 61060 is the first term that is not squarefree.
LINKS
EXAMPLE
15265 is a term because A003557(15265) = 1 = A003557(15169), A048250(15265) = 19008 = A048250(15169), A173557(15265) = 11760 = A173557(15169).
27962 is a term because A003557(27962) = 1 = A003557(26355), A048250(27962) = 48384 = A048250(26355), A173557(27962) = 12000 = A173557(26355).
PROG
(PARI)
search_up_to = (2^23);
A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0, f[i, 2]-1)); factorback(f); };
A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from Michel Marcus, Oct 31 2017
Anotsubmitted1(n) = (1/2)*(2 + ((A003557(n)+A173557(n))^2) - A003557(n) - 3*A173557(n));
Akaikki3(n) = (1/2)*(2 + ((A048250(n)+Anotsubmitted1(n))^2) - A048250(n) - 3*Anotsubmitted1(n));
om = Map(); m = 0; i=0; for(n = 1, search_up_to, k = Akaikki3(n); if(!mapisdefined(om, k), mapput(om, k, n), i++; write("b296087.txt", i, " ", n)));
CROSSREFS
Subsequence of A069822 and of A296214.
Sequence in context: A115924 A251952 A205996 * A252318 A233602 A233603
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 08 2017
STATUS
approved