login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that there is k < n for which A003557(k) = A003557(n), A048250(k) = A048250(n) and A173557(k) = A173557(n).
3

%I #20 Nov 24 2018 00:46:40

%S 15265,27962,30217,30530,45795,50541,54379,54905,57598,60434,61060,

%T 64255,66526,72357,72713,89585,90651,91590,101082,101949,108758,

%U 109810,120868,122120,128510,136555,137385,137883,138761,144714,145426,149739,151085,152633,161386,163137,164715,166315,179170,181302,181543,182942

%N Numbers n such that there is k < n for which A003557(k) = A003557(n), A048250(k) = A048250(n) and A173557(k) = A173557(n).

%C Because Euler phi(n) = A000010(n) = A003557(n) * A173557(n), Dedekind psi(n) = A001615(n) = A003557(n) * A048250(n), and because also sigma(n) (A000203) can be computed from those three elements (see A291750), these numbers form also a subset of the positions of such duplicated occurrences of values computed for those functions. See for example A069822 and A296214.

%C a(11) = 61060 is the first term that is not squarefree.

%H Antti Karttunen, <a href="/A296087/b296087.txt">Table of n, a(n) for n = 1..2876</a>

%e 15265 is a term because A003557(15265) = 1 = A003557(15169), A048250(15265) = 19008 = A048250(15169), A173557(15265) = 11760 = A173557(15169).

%e 27962 is a term because A003557(27962) = 1 = A003557(26355), A048250(27962) = 48384 = A048250(26355), A173557(27962) = 12000 = A173557(26355).

%o (PARI)

%o search_up_to = (2^23);

%o A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };

%o A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));

%o A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ This function from _Michel Marcus_, Oct 31 2017

%o Anotsubmitted1(n) = (1/2)*(2 + ((A003557(n)+A173557(n))^2) - A003557(n) - 3*A173557(n));

%o Akaikki3(n) = (1/2)*(2 + ((A048250(n)+Anotsubmitted1(n))^2) - A048250(n) - 3*Anotsubmitted1(n));

%o om = Map(); m = 0; i=0; for(n = 1, search_up_to, k = Akaikki3(n); if(!mapisdefined(om,k), mapput(om,k,n), i++; write("b296087.txt", i, " ", n)));

%Y Cf. A000010, A001615, A003557, A048250, A173557.

%Y Subsequence of A069822 and of A296214.

%K nonn

%O 1,1

%A _Antti Karttunen_, Dec 08 2017