login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295864
a(n) = hypergeom([-n, -n], [1], 1) * n! / (floor(n/2)!)^2.
2
1, 2, 12, 120, 420, 7560, 18480, 480480, 900900, 30630600, 46558512, 1955457504, 2498640144, 124932007200, 137680171200, 7985449929600, 7735904619300, 510569704873800, 441233078286000, 32651247793164000, 25467973278667920, 2088373808850769440, 1484298740174927040
OFFSET
0,2
FORMULA
a(2*n) = A000897(n).
a(n) = A000984(n) * A056040(n).
a(n) = (2*n)!/(n!*floor(n/2)!^2).
a(n) = (2^(2*n)*Gamma(n+1/2))/(sqrt(Pi)*Gamma(floor(n/2)+1)^2).
a(n) = multinomial([n/2], [n/2], n mod 2)*multinomial(n, n).
a(n) = 4^(n+[n/2])*hypergeom2F1(-n,1/2,1,1]*hypergeom2F1(-[n/2],(-1)^n/2,1,1].
a(n) = c(n)*8^n*Pochhammer(1/4, [n/2])*Pochhammer(3/4, [n/2])/[n/2]!^2 where c(n) = 1 if n is even else c(n) = (2*n-1)/4.
a(n) ~ (8^n/(sqrt(2)*Pi*n))*c(n) where c(n) = 2 - 3/(4*n) if n is even else c(n) = n + 1/8.
MAPLE
a := n -> binomial(2*n, n)*n!/iquo(n, 2)!^2: seq(a(n), n=0..22);
MATHEMATICA
a[n_] := Multinomial[Quotient[n, 2], Quotient[n, 2], Mod[n, 2]] Multinomial[n, n];
Table[a[n], {n, 0, 22}]
PROG
(Python)
def A295864():
r, c, n = 1, 1, 0
while True:
yield r * c
n += 1
c = c*(4*n-2)//n
r = (r*4)//n if n % 2 == 0 else r*n
a = A295864(); [next(a) for i in range(23)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Feb 13 2018
STATUS
approved