login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373532
a(n) is the least number k such that A373531(k) = n, or -1 if no such k exists.
1
1, 2, 12, 120, 240, 3276, 2520, 10920, 21840, 32760, 65520, 622440, 600600, 900900, 3636360, 1801800, 3603600, 4455360, 22407840, 8910720, 17821440, 51351300, 46060560, 69090840, 92121120, 126977760, 138181680, 380933280, 245044800, 414545040, 490089600, 507911040
OFFSET
1,2
FORMULA
a(n) >= A061799(n).
MATHEMATICA
f[n_] := Max[Tally[EulerPhi[Divisors[n]]][[;; , 2]]]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n]; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[12, 10^6]
PROG
(PARI) f(n) = vecmax(matreduce(apply(x->eulerphi(x), divisors(n)))[ , 2]);
lista(nmax, kmax = oo) = {my(v = vector(nmax), k = 1, c = 0, i); while(c < nmax && k < kmax, i = f(k); if(i <= nmax && v[i] == 0, c++; v[i] = k); k++); v}
(Python)
from collections import Counter
from itertools import count, islice
from sympy import divisors, totient
def agen(): # generator of terms
adict, n = dict(), 1
for k in count(1):
divs = divisors(k)
if len(divs) < n:
continue
c = Counter(totient(d) for d in divs)
v = c.most_common(1)[0][1]
if v not in adict:
adict[v] = k
while n in adict:
yield adict[n]
n += 1
print(list(islice(agen(), 11))) # Michael S. Branicky, Jun 08 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Jun 08 2024
STATUS
approved