login
A295053
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(0) + b(1) + ... + b(n-1), where a(0) = 1, a(1) = 2, b(0) = 3, and (a(n)) and (b(n)) are increasing complementary sequences.
34
1, 2, 10, 24, 52, 101, 186, 329, 568, 962, 1608, 2662, 4377, 7162, 11679, 18999, 30855, 50051, 81124, 131415, 212802, 344505, 557621, 902467, 1460457, 2363322, 3824207, 6187988, 10012686, 16201198, 26214442, 42416233, 68631304, 111048203
OFFSET
0,2
COMMENTS
The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. Guide to related sequencres:
A295053: a(n) = a(n-1) + a(n-2) + b(0) + b(1) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295054: a(n) = a(n-1) + a(n-2) + b(1) + b(2) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295055: a(n) = a(n-2) + b(1) + b(2) + ... + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295056: a(n) = 2*a(n-1) + b(n-1), a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3
A295057: a(n) = 2*a(n-1) + b(n-1), a(0) = 2, a(1) = 5, b(0) = 1
A295058: a(n) = 2*a(n-1) - b(n-1), a(0) = 3, a(1) = 5, b(0) = 1
A295059: a(n) = 2*a(n-1) + b(n-2), a(0) = 1, a(1) = 4, b(0) = 2, b(1) = 3
A295060: a(n) = 2*a(n-1) - b(n-2), a(0) = 3, a(1) = 5, b(0) = 1, b(1) = 2
A295061: a(n) = 4*a(n-1) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2
A295062: a(n) = 4*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295063: a(n) = 4*a(n-2) + b(n-1) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2
A295064: a(n) = 8*a(n-3) + b(n-1), a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2
A295065: a(n) = 8*a(n-3) + b(n-2), a(0) = 1, a(1) = 3, a(2) = 5, b(0) = 2
A295066: a(n) = 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2
A295067: a(n) = 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2
A295068: a(n) = 2*a(n-2) - b(n-1) + n, a(0) = 3, a(1) = 4, b(0) = 1
A295069: a(n) = 2*a(n-2) - b(n-2) + n, a(0) = 3, a(1) = 4, b(0) = 1
A295070: a(n) = a(n-2) + b(n-1) + b(n-2), a(0) = 3, a(1) = 2, b(0) = 3
A295133: a(n) = 3*a(n-1) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295134: a(n) = 3*a(n-1) + b(n-1) - 1, a(0) = 1, a(1) = 2, b(0) = 3
A295135: a(n) = 3*a(n-1) + b(n-1) - 2, a(0) = 1, a(1) = 2, b(0) = 3
A295136: a(n) = 3*a(n-1) + b(n-1) - 3, a(0) = 1, a(1) = 2, b(0) = 3
A295137: a(n) = 3*a(n-1) + b(n-1) - n, a(0) = 1, a(1) = 2, b(0) = 3
A295138: a(n) = 3*a(n-2) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3
A295139: a(n) = 3*a(n-1) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295140: a(n) = 3*a(n-1) - b(n-2) + 4, a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295141: a(n) = 2*a(n-1) + a(n-2) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295142: a(n) = 2*a(n-1) + a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295143: a(n) = 2*a(n-1) + a(n-1) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295144: a(n) = 2*a(n-1) + a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295145: a(n) = a(n-1) + 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295146: a(n) = a(n-1) + 2*a(n-2) + b(n-2), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
A295147: a(n) = a(n-1) + 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 2, b(0) = 3, b(1) = 4
A295148: a(n) = a(n-1) + 2*a(n-2) + b(n-1), a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 2, b(0) = 3
b(1) = 4 (least "new number")
a(2) = a(1) + a(0) + b(0) + b(1) = 10
Complement: (b(n)) = (3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 2; b[0] = 3;
a[n_] := a[n] = a[n - 1] + a[n - 2] + Sum[b[k], {k, 0, n - 1}];
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 18}] (* A295053 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A294860.
Sequence in context: A049450 A092906 A244383 * A130016 A120550 A233266
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Nov 18 2017
STATUS
approved