login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295051
T(n,k) = Number of n X k 0..1 arrays with each 1 horizontally or vertically adjacent to 0 or 2 1's.
8
2, 3, 3, 5, 8, 5, 8, 19, 19, 8, 13, 48, 72, 48, 13, 21, 120, 270, 270, 120, 21, 34, 299, 1027, 1569, 1027, 299, 34, 55, 747, 3879, 9045, 9045, 3879, 747, 55, 89, 1865, 14691, 52199, 79855, 52199, 14691, 1865, 89, 144, 4656, 55589, 301306, 700972, 700972, 301306
OFFSET
1,1
COMMENTS
Table starts
..2....3......5........8........13..........21............34.............55
..3....8.....19.......48.......120.........299...........747...........1865
..5...19.....72......270......1027........3879.........14691..........55589
..8...48....270.....1569......9045.......52199........301306........1739181
.13..120...1027.....9045.....79855......700972.......6171389.......54282231
.21..299...3879....52199....700972.....9388654.....125887202.....1687776548
.34..747..14691...301306...6171389...125887202....2573527520....52573942625
.55.1865..55589..1739181..54282231..1687776548...52573942625..1637027372706
.89.4656.210418.10038808.477606439.22627774940.1074298644657.50976777525816
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2).
k=2: a(n) = 2*a(n-1) +a(n-2) +a(n-3) -a(n-4).
k=3: a(n) = 3*a(n-1) +4*a(n-2) -3*a(n-3) -2*a(n-4) -6*a(n-5) +3*a(n-6) -a(n-7) +a(n-9).
k=4: [order 18].
k=5: [order 49].
EXAMPLE
Some solutions for n=5, k=4
..0..0..1..0. .0..1..0..0. .0..1..1..0. .1..0..0..0. .1..0..1..0
..1..0..0..1. .1..0..1..0. .0..1..1..0. .0..0..0..0. .0..0..0..0
..0..0..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..0..0..1
..0..0..0..1. .0..0..0..0. .0..0..1..1. .0..0..0..0. .1..1..0..0
..0..1..0..0. .0..0..0..0. .1..0..1..1. .0..0..1..0. .1..1..0..0
CROSSREFS
Column 1 is A000045(n+2).
Sequence in context: A339050 A296335 A296635 * A295379 A295352 A295606
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 13 2017
STATUS
approved