The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A295144 Solution of the complementary equation a(n) = 2*a(n-1) + a(n-2) + b(n-1), where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, and (a(n)) and (b(n)) are increasing complementary sequences. 5
 1, 3, 11, 30, 77, 191, 467, 1134, 2745, 6636, 16030, 38710, 93465, 225656, 544794, 1315262, 3175337, 7665956, 18507270, 44680518, 107868329, 260417200, 628702754 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295053 for a guide to related sequences. LINKS Table of n, a(n) for n=0..22. Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13. FORMULA a(n+1)/a(n) -> 1 + sqrt(2). EXAMPLE a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4 a(2) =2*a(1) + a(0) + b(1) = 11 Complement: (b(n)) = (2, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, ...) MATHEMATICA mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; a[n_] := a[n] = 2 a[ n - 1] + a[n - 2] + b[n - 1]; b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; Table[a[n], {n, 0, 18}] (* A295144 *) Table[b[n], {n, 0, 10}] CROSSREFS Cf. A295053, A295141, A295142, A295143. Sequence in context: A009183 A165893 A106397 * A167375 A098150 A346848 Adjacent sequences: A295141 A295142 A295143 * A295145 A295146 A295147 KEYWORD nonn,easy AUTHOR Clark Kimberling, Nov 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 12 20:38 EDT 2024. Contains 371639 sequences. (Running on oeis4.)