The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294826 Numerators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0. 4
 1, 4, 151, 1315, 36698, 667109, 10749479, 399851303, 401511863, 18933826729, 246810236317, 4700047812703, 145981746528913, 9796912235587651, 9810925971351679, 9823210739716249, 403196782523223569, 11704197956499986461, 269433333504358946963, 5231145593209503407215, 747842028258712790473 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The corresponding denominators are given in A294827. For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,2]. The limit of the series is V(5,2) = lim_{n -> oo} V(5,2;n) = ((5/2)*log(5) - (2*ph-1)*(log(phi) - (Pi/5)*sqrt(7-4*phi)))/6, with the golden section phi:= (1 + sqrt(5))/2. The value is 0.661389626561... given by (1/2)*A244639. In the Koecher reference v_5(2) =  (3/5)*V(5,2) = 0.39683377593671665701 ...is given as (1/4)*log(5) - (1/(2*sqrt(5)))*log((1 + sqrt(5))/2) + (Pi/10)*sqrt((5 - 2*sqrt(5))/5). REFERENCES Max Koecher, Klassische elementare Analysis, BirkhĂ¤user, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193. LINKS G. C. Greubel, Table of n, a(n) for n = 0..600 Eric Weisstein's World of Mathematics, Digamma Function FORMULA a(n) = numerator(V(5,2;n)) with V(5,2;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 2)) = Sum_{k=0..n} 1/A135706(k+1) = (1/3)*Sum_{k=0..n} (1/(k + 2/5) - 1/(k+1)) = (-Psi(2/5) + Psi(n+7/5) - (gamma + Psi(n+2)))/3 with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620. EXAMPLE The rationals V(5,2;n), n >= 0, begin: 1/2, 4/7, 151/252, 1315/2142, 36698/58905, 667109/1060290, 10749479/16964640, 399851303/627691680, 401511863/627691680, 18933826729/29501508960, 246810236317/383519616480, ... V(5,2;10^6) = 0.6613894266 (Maple, 10 digits) to be compared with 0.6613896266 giving the 10 digit value of V(5,2) from (1/2)*A244649. MATHEMATICA Table[Numerator[Sum[1/((k+1)*(5*k+2)), {k, 0, n}]], {n, 0, 25}] (* G. C. Greubel, Aug 29 2018 *) PROG (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ Michel Marcus, Nov 17 2017 (MAGMA) [Numerator((&+[1/((k+1)*(5*k+2)): k in [0..n]])): n in [0..25]]; // G. C. Greubel, Aug 29 2018 CROSSREFS Cf. A001620, A000566, A135706, A294512, A294520/A294521 (V(5,1;n)), A244639. Sequence in context: A160470 A269136 A226073 * A247115 A006439 A264711 Adjacent sequences:  A294823 A294824 A294825 * A294827 A294828 A294829 KEYWORD nonn,frac,easy AUTHOR Wolfdieter Lang, Nov 16 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 31 08:54 EDT 2020. Contains 334747 sequences. (Running on oeis4.)