Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Aug 31 2023 17:29:49
%S 1,4,151,1315,36698,667109,10749479,399851303,401511863,18933826729,
%T 246810236317,4700047812703,145981746528913,9796912235587651,
%U 9810925971351679,9823210739716249,403196782523223569,11704197956499986461,269433333504358946963,5231145593209503407215,747842028258712790473
%N Numerators of the partial sums of the reciprocals of twice the heptagonal numbers (k + 1)*(5*k + 2) = A135706(k+1) = 2*A000566(k+1), for k >= 0.
%C The corresponding denominators are given in A294827.
%C For the general case V(m,r;n) = Sum_{k=0..n} 1/((k + 1)*(m*k + r)) = (1/(m - r))*Sum_{k=0..n} (m/(m*k + r) - 1/(k+1)), for r = 1, ..., m-1 and m = 2, 3, ..., and their limits see a comment in A294512. Here [m,r] = [5,2].
%C The limit of the series is V(5,2) = lim_{n -> oo} V(5,2;n) = ((5/2)*log(5) - (2*phi-1)*(log(phi) - (Pi/5)*sqrt(7-4*phi)))/6, with the golden section phi:= (1 + sqrt(5))/2. The value is 0.661389626561... given by (1/2)*A244639.
%C In the Koecher reference v_5(2) = (3/5)*V(5,2) = 0.39683377593671665701 ...is given as (1/4)*log(5) - (1/(2*sqrt(5)))*log((1 + sqrt(5))/2) + (Pi/10)*sqrt((5 - 2*sqrt(5))/5).
%D Max Koecher, Klassische elementare Analysis, Birkhäuser, Basel, Boston, 1987, Eulersche Reihen, pp. 189 - 193.
%H G. C. Greubel, <a href="/A294826/b294826.txt">Table of n, a(n) for n = 0..600</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DigammaFunction.html">Digamma Function</a>
%F a(n) = numerator(V(5,2;n)) with V(5,2;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 2)) = Sum_{k=0..n} 1/A135706(k+1) = (1/3)*Sum_{k=0..n} (1/(k + 2/5) - 1/(k+1)) = (-Psi(2/5) + Psi(n+7/5) - (gamma + Psi(n+2)))/3 with the digamma function Psi and the Euler-Mascheroni constant gamma = -Psi(1) from A001620.
%e The rationals V(5,2;n), n >= 0, begin: 1/2, 4/7, 151/252, 1315/2142, 36698/58905, 667109/1060290, 10749479/16964640, 399851303/627691680, 401511863/627691680, 18933826729/29501508960, 246810236317/383519616480, ...
%e V(5,2;10^6) = 0.6613894266 (Maple, 10 digits) to be compared with 0.6613896266 giving the 10 digit value of V(5,2) from (1/2)*A244649.
%t Table[Numerator[Sum[1/((k+1)*(5*k+2)), {k,0,n}]], {n,0,25}] (* _G. C. Greubel_, Aug 29 2018 *)
%t Accumulate[1/(2*PolygonalNumber[7,Range[30]])]//Numerator (* _Harvey P. Dale_, Aug 31 2023 *)
%o (PARI) a(n) = numerator(sum(k=0, n, 1/((k + 1)*(5*k + 2)))); \\ _Michel Marcus_, Nov 17 2017
%o (Magma) [Numerator((&+[1/((k+1)*(5*k+2)): k in [0..n]])): n in [0..25]]; // _G. C. Greubel_, Aug 29 2018
%Y Cf. A001620, A000566, A135706, A294512, A294520/A294521 (V(5,1;n)), A244639.
%K nonn,frac,easy
%O 0,2
%A _Wolfdieter Lang_, Nov 16 2017