login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294829
Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(5*k + 3) = A147874(k+2), for k >= 0.
4
3, 48, 624, 1872, 215280, 1506960, 16576560, 39369330, 564293730, 9028699680, 478521083040, 4625703802720, 41631334224480, 707732681816160, 51664485772579680, 25832242886289840, 2144076159562056720, 357346026593676120, 3692575608134653240, 2584802925694257268
OFFSET
0,1
COMMENTS
The corresponding numerators are given in A294828. Details are found there.
LINKS
FORMULA
a(n) = denominator(V(5,3;n)) with V(5,3;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 3)) = Sum_{k=0..n} 1/A147874(k+2) = (1/2)*Sum_{k=0..n} (1/(k + 3/5) - 1/(k+1)). For this sum in terms of the digamma function see A294828.
EXAMPLE
For the rationals see A294828.
MAPLE
map(denom, ListTools:-PartialSums([seq(1/(k+1)/(5*k+3), k=0..50)])); # Robert Israel, Nov 17 2017
PROG
(PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(5*k + 3)))); \\ Michel Marcus, Nov 17 2017
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Wolfdieter Lang, Nov 16 2017
STATUS
approved