login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(5*k + 3) = A147874(k+2), for k >= 0.
4

%I #10 Nov 17 2017 20:35:49

%S 3,48,624,1872,215280,1506960,16576560,39369330,564293730,9028699680,

%T 478521083040,4625703802720,41631334224480,707732681816160,

%U 51664485772579680,25832242886289840,2144076159562056720,357346026593676120,3692575608134653240,2584802925694257268

%N Denominators of the partial sums of the reciprocals of the numbers (k + 1)*(5*k + 3) = A147874(k+2), for k >= 0.

%C The corresponding numerators are given in A294828. Details are found there.

%H Robert Israel, <a href="/A294829/b294829.txt">Table of n, a(n) for n = 0..891</a>

%F a(n) = denominator(V(5,3;n)) with V(5,3;n) = Sum_{k=0..n} 1/((k + 1)*(5*k + 3)) = Sum_{k=0..n} 1/A147874(k+2) = (1/2)*Sum_{k=0..n} (1/(k + 3/5) - 1/(k+1)). For this sum in terms of the digamma function see A294828.

%e For the rationals see A294828.

%p map(denom,ListTools:-PartialSums([seq(1/(k+1)/(5*k+3),k=0..50)])); # _Robert Israel_, Nov 17 2017

%o (PARI) a(n) = denominator(sum(k=0, n, 1/((k + 1)*(5*k + 3)))); \\ _Michel Marcus_, Nov 17 2017

%Y Cf. A147874, A294828, A294830.

%K nonn,frac,easy

%O 0,1

%A _Wolfdieter Lang_, Nov 16 2017