OFFSET
0,9
EXAMPLE
T(4,1) = 1: 0123.
T(4,2) = 9: 0011, 0012, 0101, 0102, 0110, 0112, 0120, 0121, 0122.
T(4,3) = 4: 0001, 0010, 0100, 0111.
T(4,4) = 1: 0000.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 9, 4, 1;
0, 1, 26, 20, 5, 1;
0, 1, 82, 97, 30, 6, 1;
0, 1, 276, 496, 191, 42, 7, 1;
0, 1, 1014, 2686, 1259, 310, 56, 8, 1;
0, 1, 4006, 15481, 8784, 2416, 470, 72, 9, 1;
0, 1, 17046, 94843, 65012, 19787, 4141, 677, 90, 10, 1;
...
MAPLE
b:= proc(n, i, t, p, k) option remember; `if`(n=0, 1,
add(`if`(coeff(p, x, j)=k, 0, b(n-1, j, t+
`if`(j>i, 1, 0), p+x^j, k)), j=1..t+1))
end:
A:= (n, k)-> b(n, 0$3, k):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n == 0, 1, Sum[If[ Coefficient[p, x, j] == k, 0, b[n - 1, j, t + If[j > i, 1, 0], p + x^j, k]], {j, t + 1}]];
A[n_, k_] := b[n, 0, 0, 0, k];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 25 2017
STATUS
approved