login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294219
Number T(n,k) of ascent sequences of length n where the maximum of 0 and all letter multiplicities equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
2
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 9, 4, 1, 0, 1, 26, 20, 5, 1, 0, 1, 82, 97, 30, 6, 1, 0, 1, 276, 496, 191, 42, 7, 1, 0, 1, 1014, 2686, 1259, 310, 56, 8, 1, 0, 1, 4006, 15481, 8784, 2416, 470, 72, 9, 1, 0, 1, 17046, 94843, 65012, 19787, 4141, 677, 90, 10, 1
OFFSET
0,9
FORMULA
T(n,k) = A294220(n,k) - A294220(n,k-1) for k>0, T(n,0) = A294220(n,k) = A000007(n).
EXAMPLE
T(4,1) = 1: 0123.
T(4,2) = 9: 0011, 0012, 0101, 0102, 0110, 0112, 0120, 0121, 0122.
T(4,3) = 4: 0001, 0010, 0100, 0111.
T(4,4) = 1: 0000.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 1, 3, 1;
0, 1, 9, 4, 1;
0, 1, 26, 20, 5, 1;
0, 1, 82, 97, 30, 6, 1;
0, 1, 276, 496, 191, 42, 7, 1;
0, 1, 1014, 2686, 1259, 310, 56, 8, 1;
0, 1, 4006, 15481, 8784, 2416, 470, 72, 9, 1;
0, 1, 17046, 94843, 65012, 19787, 4141, 677, 90, 10, 1;
...
MAPLE
b:= proc(n, i, t, p, k) option remember; `if`(n=0, 1,
add(`if`(coeff(p, x, j)=k, 0, b(n-1, j, t+
`if`(j>i, 1, 0), p+x^j, k)), j=1..t+1))
end:
A:= (n, k)-> b(n, 0$3, k):
T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n == 0, 1, Sum[If[ Coefficient[p, x, j] == k, 0, b[n - 1, j, t + If[j > i, 1, 0], p + x^j, k]], {j, t + 1}]];
A[n_, k_] := b[n, 0, 0, 0, k];
T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2020, after Maple *)
CROSSREFS
Columns k=0-1 give: A000007, A057427.
Row sums give A022493.
Cf. A294220.
Sequence in context: A193357 A361953 A112413 * A091480 A034374 A261318
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Oct 25 2017
STATUS
approved