login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294222
Exponential transform of the Lucas numbers (A000204).
2
1, 1, 4, 14, 69, 372, 2320, 15913, 119938, 978456, 8586177, 80456488, 800905726, 8429875989, 93453556378, 1087491751050, 13244265431889, 168370713583760, 2229127899764052, 30671277674880073, 437770190804865414, 6470590710038358164, 98891186448861721537, 1560548838446810788940, 25394750159240696915562
OFFSET
0,3
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Exponential Transform
Eric Weisstein's World of Mathematics, Lucas Number
FORMULA
E.g.f.: exp(2*exp(x/2)*cosh(sqrt(5)*x/2) - 2).
EXAMPLE
E.g.f.: A(x) = 1 + x/1! + 4*x^2/2! + 14*x^3/3! + 69*x^4/4! + 372*x^5/5! + 2320*x^6/6! + ...
MATHEMATICA
Range[0, 24]! CoefficientList[Series[Exp[2 Exp[x/2] Cosh[Sqrt[5] x/2] - 2], {x, 0, 24}], x]
a[n_] := a[n] = Sum[a[n - k] Binomial[n - 1, k - 1] LucasL[k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Oct 25 2017
STATUS
approved