login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112413 Triangle read by rows: T(n,k) is the number of Dyck paths of semilength n and starting with exactly k UD's, where U=(1,1), D=(1,-1) (0 <= k <= n). 0
1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 9, 3, 1, 0, 1, 28, 9, 3, 1, 0, 1, 90, 28, 9, 3, 1, 0, 1, 297, 90, 28, 9, 3, 1, 0, 1, 1001, 297, 90, 28, 9, 3, 1, 0, 1, 3432, 1001, 297, 90, 28, 9, 3, 1, 0, 1, 11934, 3432, 1001, 297, 90, 28, 9, 3, 1, 0, 1, 41990, 11934, 3432, 1001, 297, 90, 28, 9, 3, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

All columns, except for initial terms, yield A000245. Row sums yield the Catalan numbers (A000108).

Riordan array ((1-x)*c(x),x), c(x) the g.f. of A000108; equal to A125177*A130595. - Philippe Deléham, Dec 08 2009

LINKS

Table of n, a(n) for n=0..76.

FORMULA

T(n,k) = c(n-k) - c(n-k-1), where c(n) = binomial(2n, n)/(n+1) is the n-th Catalan number. G.f. = (1-z)*C/(1-tz), where C = (1-sqrt(1-4z))/(2z) is the Catalan function.

EXAMPLE

T(5,2)=3 because we have UDUDUUDDUD, UDUDUUDUDD and UDUDUUUDDD, where U=(1,1), D=(1,-1).

Triangle begins:

   1;

   0, 1;

   1, 0, 1;

   3, 1, 0, 1;

   9, 3, 1, 0, 1;

  28, 9, 3, 1, 0, 1;

MAPLE

T:=proc(n, k) local c: c:=n->binomial(2*n, n)/(n+1): if k<n then c(n-k)-c(n-k-1) elif k=n then 1 else 0 fi end: for n from 0 to 12 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form

CROSSREFS

Cf. A000108, A000245.

Sequence in context: A274494 A274490 A193357 * A294219 A091480 A034374

Adjacent sequences:  A112410 A112411 A112412 * A112414 A112415 A112416

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Dec 08 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 14 12:04 EDT 2021. Contains 345025 sequences. (Running on oeis4.)