login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112415
a(n) = C(1+n,1) * C(2+n,1) * C(4+n,2).
2
12, 60, 180, 420, 840, 1512, 2520, 3960, 5940, 8580, 12012, 16380, 21840, 28560, 36720, 46512, 58140, 71820, 87780, 106260, 127512, 151800, 179400, 210600, 245700, 285012, 328860, 377580, 431520, 491040, 556512, 628320, 706860, 792540, 885780, 987012, 1096680
OFFSET
0,1
FORMULA
From R. J. Mathar, Aug 15 2008: (Start)
a(n) = (n+1)*(n+2)*(n+3)*(n+4)/2 = A033486(n+1) = 12*A000332(n+4).
O.g.f.: 12/(1-x)^5. (End)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=12, a(1)=60, a(2)=180, a(3)=420, a(4)=840. - Harvey P. Dale, Jul 24 2011
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=0} 1/a(n) = 1/9.
Sum_{n>=0} (-1)^n/a(n) = 8*(3*log(2)-2)/9. (End)
EXAMPLE
n=0: C(1+0,1)*C(2+0,1)*C(4+0,2) = C(1,1)*C(2,1)*C(4,2) = 1*2*6 = 12;
n=10: C(1+10,1)*C(2+10,1)*C(4+10,2) = C(11,1)*C(12,1)*C(14,2) = 11*12*91 = 12012.
MATHEMATICA
Table[(n+1)(n+2)Binomial[4+n, 2], {n, 0, 30}] (* or *) LinearRecurrence[ {5, -10, 10, -5, 1}, {12, 60, 180, 420, 840}, 31] (* Harvey P. Dale, Jul 24 2011 *)
PROG
(Magma) [(n+1)*(n+2)*(n+3)*(n+4)/2: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
CROSSREFS
Sequence in context: A279509 A008530 A033486 * A174642 A374160 A061624
KEYWORD
easy,nonn
AUTHOR
Zerinvary Lajos, Dec 09 2005
STATUS
approved