login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = C(1+n,1) * C(2+n,1) * C(4+n,2).
2

%I #26 Sep 04 2022 06:26:24

%S 12,60,180,420,840,1512,2520,3960,5940,8580,12012,16380,21840,28560,

%T 36720,46512,58140,71820,87780,106260,127512,151800,179400,210600,

%U 245700,285012,328860,377580,431520,491040,556512,628320,706860,792540,885780,987012,1096680

%N a(n) = C(1+n,1) * C(2+n,1) * C(4+n,2).

%H Vincenzo Librandi, <a href="/A112415/b112415.txt">Table of n, a(n) for n = 0..680</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F From _R. J. Mathar_, Aug 15 2008: (Start)

%F a(n) = (n+1)*(n+2)*(n+3)*(n+4)/2 = A033486(n+1) = 12*A000332(n+4).

%F O.g.f.: 12/(1-x)^5. (End)

%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5); a(0)=12, a(1)=60, a(2)=180, a(3)=420, a(4)=840. - _Harvey P. Dale_, Jul 24 2011

%F From _Amiram Eldar_, Sep 04 2022: (Start)

%F Sum_{n>=0} 1/a(n) = 1/9.

%F Sum_{n>=0} (-1)^n/a(n) = 8*(3*log(2)-2)/9. (End)

%e n=0: C(1+0,1)*C(2+0,1)*C(4+0,2) = C(1,1)*C(2,1)*C(4,2) = 1*2*6 = 12;

%e n=10: C(1+10,1)*C(2+10,1)*C(4+10,2) = C(11,1)*C(12,1)*C(14,2) = 11*12*91 = 12012.

%t Table[(n+1)(n+2)Binomial[4+n,2],{n,0,30}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{12,60,180,420,840},31] (* _Harvey P. Dale_, Jul 24 2011 *)

%o (Magma) [(n+1)*(n+2)*(n+3)*(n+4)/2: n in [0..40]]; // _Vincenzo Librandi_, Apr 28 2011

%Y Cf. A000332, A033486.

%K easy,nonn

%O 0,1

%A _Zerinvary Lajos_, Dec 09 2005