Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Feb 11 2022 21:05:02
%S 1,0,1,0,1,1,0,1,3,1,0,1,9,4,1,0,1,26,20,5,1,0,1,82,97,30,6,1,0,1,276,
%T 496,191,42,7,1,0,1,1014,2686,1259,310,56,8,1,0,1,4006,15481,8784,
%U 2416,470,72,9,1,0,1,17046,94843,65012,19787,4141,677,90,10,1
%N Number T(n,k) of ascent sequences of length n where the maximum of 0 and all letter multiplicities equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
%F T(n,k) = A294220(n,k) - A294220(n,k-1) for k>0, T(n,0) = A294220(n,k) = A000007(n).
%e T(4,1) = 1: 0123.
%e T(4,2) = 9: 0011, 0012, 0101, 0102, 0110, 0112, 0120, 0121, 0122.
%e T(4,3) = 4: 0001, 0010, 0100, 0111.
%e T(4,4) = 1: 0000.
%e Triangle T(n,k) begins:
%e 1;
%e 0, 1;
%e 0, 1, 1;
%e 0, 1, 3, 1;
%e 0, 1, 9, 4, 1;
%e 0, 1, 26, 20, 5, 1;
%e 0, 1, 82, 97, 30, 6, 1;
%e 0, 1, 276, 496, 191, 42, 7, 1;
%e 0, 1, 1014, 2686, 1259, 310, 56, 8, 1;
%e 0, 1, 4006, 15481, 8784, 2416, 470, 72, 9, 1;
%e 0, 1, 17046, 94843, 65012, 19787, 4141, 677, 90, 10, 1;
%e ...
%p b:= proc(n, i, t, p, k) option remember; `if`(n=0, 1,
%p add(`if`(coeff(p, x, j)=k, 0, b(n-1, j, t+
%p `if`(j>i, 1, 0), p+x^j, k)), j=1..t+1))
%p end:
%p A:= (n, k)-> b(n, 0$3, k):
%p T:= (n, k)-> A(n, k)-`if`(k=0, 0, A(n, k-1)):
%p seq(seq(T(n, k), k=0..n), n=0..10);
%t b[n_, i_, t_, p_, k_] := b[n, i, t, p, k] = If[n == 0, 1, Sum[If[ Coefficient[p, x, j] == k, 0, b[n - 1, j, t + If[j > i, 1, 0], p + x^j, k]], {j, t + 1}]];
%t A[n_, k_] := b[n, 0, 0, 0, k];
%t T[n_, k_] := A[n, k] - If[k == 0, 0, A[n, k - 1]];
%t Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, May 29 2020, after Maple *)
%Y Columns k=0-1 give: A000007, A057427.
%Y Row sums give A022493.
%Y Cf. A294220.
%K nonn,tabl
%O 0,9
%A _Alois P. Heinz_, Oct 25 2017