login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294110
Numbers with prime factorization of the form p_1^p_2*p_2^p_3*...p_(n-1)^p_n*p_n where p_(n-1) < p(n) and n > 1.
1
24, 160, 896, 1215, 9720, 15309, 22528, 106496, 122472, 546875, 1948617, 2228224, 9961472, 15588936, 17500000, 20726199, 132890625, 165809592, 192937984, 537109375, 1063125000, 2195382771, 15569256448, 15869140625, 17187500000, 17563062168, 21750594173, 22082967873, 66571993088, 130517578125
OFFSET
1,1
COMMENTS
All members of this sequence, by definition, only have primes and 1 as exponents of prime factors.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
24 is part of the sequence because its prime factorization is 2^3*3.
122472 is part of the sequence because its prime factorization is 2^3*3^7*7
10756480 is not part of the sequence because it prime factorization is 2^7*7^5*5. This does not follow the rule where each base in the chain must be greater than the previous (7<5 is not true).
PROG
(Python)
def prime_factors(n):
factors = {}
i = 2
while n != 1:
while n % i == 0:
n /= i
if i in factors:
factors[i] += 1
else:
factors[i] = 1
i += 1
return factors
def a(n):
i = 1
c = 0
while c < n:
i += 1
p = prime_factors(i)
if len(p) > 1 and list(p.keys())[1:]+[1] == list(p.values()):
c +=1
return i
(PARI) is(n)=my(f=factor(n)); if(#f~<2, return(0)); for(i=2, #f~, if(f[i, 1]!=f[i-1, 2], return(0))); f[#f~, 2]==1 \\ Charles R Greathouse IV, Oct 22 2017
(PARI) get(q, N)=my(v, pq); if(N>>q == 0, return(if(N<1, [], [1]))); v=List([1]); forprime(p=2, min(sqrtnint(N, q), q-1), pq=p^q; u=pq*get(p, N\pq); for(i=1, #u, listput(v, u[i])); u=0); Set(v)
list(lim)=my(v=List(), u, t); lim\=1; forprime(q=3, lambertw(log(2)*lim)\log(2), forprime(p=2, min(sqrtnint(lim, q), q-1), t=p^q*q; u=t*get(p, lim\t); for(i=1, #u, listput(v, u[i])); u=0)); Set(v) \\ Charles R Greathouse IV, Oct 22 2017
CROSSREFS
Subsequence of A046099.
Sequence in context: A231341 A186862 A305165 * A136380 A250323 A250142
KEYWORD
nonn
AUTHOR
Matthew McCaskill, Oct 22 2017
EXTENSIONS
a(10)-a(30) from Charles R Greathouse IV, Oct 22 2017
Definition corrected by Jens Kruse Andersen, Oct 28 2017
STATUS
approved