login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305165
a(n) = 136*2^n - 112.
3
24, 160, 432, 976, 2064, 4240, 8592, 17296, 34704, 69520, 139152, 278416, 556944, 1114000, 2228112, 4456336, 8912784, 17825680, 35651472, 71303056, 142606224, 285212560, 570425232, 1140850576, 2281701264, 4563402640, 9126805392, 18253610896, 36507221904, 73014443920, 146028887952, 292057776016, 584115552144
OFFSET
0,1
COMMENTS
a(n) is the first Zagreb index of the second type dendrimer nanostar NS2[n], defined pictorially in the Chen et al. reference (Fig. 1).
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternatively, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph.
The M-polynomial of NS2[n] is M(NS2[n];x,y) = 2*(4*2^n-1)*x^2*y^2 + 16*(2*n - 1)*x^2*y^3 + 4*(2^n - 1)*x^3*y^3 (n>=0).
LINKS
S. Chen and J. Yang, Second-order and third-order connectivity indices of dendrimer nanostars, International Mathematical Forum, 6, No, 5, 2011, 223-228.
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
FORMULA
G.f.: 8*(3 + 11*x)/((1 - x)*(1 - 2*x)). - Vincenzo Librandi, May 27 2018
MAPLE
seq(136*2^n-112, n = 0 .. 40);
MATHEMATICA
Table[136 2^n - 112, {n, 0, 33}] (* Vincenzo Librandi, May 27 2018 *)
LinearRecurrence[{3, -2}, {24, 160}, 40] (* Harvey P. Dale, Jan 30 2023 *)
PROG
(Magma) [136*2^n - 112: n in [0..33]]; // Vincenzo Librandi, May 27 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 27 2018
STATUS
approved