login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305163
a(n) = 24*2^n - 18.
4
6, 30, 78, 174, 366, 750, 1518, 3054, 6126, 12270, 24558, 49134, 98286, 196590, 393198, 786414, 1572846, 3145710, 6291438, 12582894, 25165806, 50331630, 100663278, 201326574, 402653166, 805306350, 1610612718, 3221225454, 6442450926, 12884901870, 25769803758, 51539607534, 103079215086, 206158430190
OFFSET
0,1
COMMENTS
a(n) is the number of vertices in the second type dendrimer nanostar NS2[n], defined pictorially in the Chen et al. reference (Fig. 1).
LINKS
S. Chen and J. Yang, Second-order and third-order connectivity indices of dendrimer nanostars, International Mathematical Forum, 6, No, 5, 2011, 223-228.
FORMULA
G.f.: 6*(1+2*x)/((1-x)*(1-2*x)). - Vincenzo Librandi, May 27 2018
a(n) = 3*a(n-1) - 2*a(n-2) for n>1. - Colin Barker, May 27 2018
MAPLE
seq(24*2^n-18, n=0..40);
MATHEMATICA
Table[24 2^n - 18, {n, 0, 33}] (* Vincenzo Librandi, May 27 2018 *)
PROG
(Magma) [24*2^n - 18: n in [0..33]]; // Vincenzo Librandi, May 27 2018
(PARI) Vec(6*(1 + 2*x) / ((1 - x)*(1 - 2*x)) + O(x^50)) \\ Colin Barker, May 27 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, May 27 2018
STATUS
approved