The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305160 a(n) = 123*2^n - 99. 3
 24, 147, 393, 885, 1869, 3837, 7773, 15645, 31389, 62877, 125853, 251805, 503709, 1007517, 2015133, 4030365, 8060829, 16121757, 32243613, 64487325, 128974749, 257949597, 515899293, 1031798685, 2063597469, 4127195037, 8254390173, 16508780445, 33017560989, 66035122077, 132070244253, 264140488605 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS a(n) is the second Zagreb index of the all-aromatic dendrimer G[n], shown pictorially as DNS1[n] in the Shabani et al. reference (Fig. 1). The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The M-polynomial of the dendrimer G[n] is M(G[n]; x, y) = 6*2^n*x^2*y^2 + 12*(2^n - 1)*x^2*y^3 +3* (2^n - 1)*x^3*y^3. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102. H. Shabani, A. R. Ashrafi, and I. Gutman, Geometric-arithmetic index: an algebraic approach, Studia UBB, Chemia, 55, No. 4, 107-112, 2010. Index entries for linear recurrences with constant coefficients, signature (3,-2). FORMULA From Colin Barker, May 30 2018: (Start) G.f.: 3*(8 + 25*x) / ((1 - x)*(1 - 2*x)). a(n) = 3*a(n-1) - 2*a(n-2) for n>1. (End) MAPLE seq(123*2^n-99, n = 0..40); PROG (PARI) Vec(3*(8 + 25*x) / ((1 - x)*(1 - 2*x)) + O(x^40)) \\ Colin Barker, May 30 2018 CROSSREFS Cf. A305158, A305159. Sequence in context: A042118 A039494 A159650 * A279459 A092181 A001702 Adjacent sequences:  A305157 A305158 A305159 * A305161 A305162 A305163 KEYWORD nonn,easy AUTHOR Emeric Deutsch, May 29 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 5 22:45 EDT 2020. Contains 333260 sequences. (Running on oeis4.)