login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers with prime factorization of the form p_1^p_2*p_2^p_3*...p_(n-1)^p_n*p_n where p_(n-1) < p(n) and n > 1.
1

%I #16 Nov 07 2024 15:22:33

%S 24,160,896,1215,9720,15309,22528,106496,122472,546875,1948617,

%T 2228224,9961472,15588936,17500000,20726199,132890625,165809592,

%U 192937984,537109375,1063125000,2195382771,15569256448,15869140625,17187500000,17563062168,21750594173,22082967873,66571993088,130517578125

%N Numbers with prime factorization of the form p_1^p_2*p_2^p_3*...p_(n-1)^p_n*p_n where p_(n-1) < p(n) and n > 1.

%C All members of this sequence, by definition, only have primes and 1 as exponents of prime factors.

%H Charles R Greathouse IV, <a href="/A294110/b294110.txt">Table of n, a(n) for n = 1..10000</a>

%e 24 is part of the sequence because its prime factorization is 2^3*3.

%e 122472 is part of the sequence because its prime factorization is 2^3*3^7*7

%e 10756480 is not part of the sequence because it prime factorization is 2^7*7^5*5. This does not follow the rule where each base in the chain must be greater than the previous (7<5 is not true).

%o (Python)

%o def prime_factors(n):

%o factors = {}

%o i = 2

%o while n != 1:

%o while n % i == 0:

%o n /= i

%o if i in factors:

%o factors[i] += 1

%o else:

%o factors[i] = 1

%o i += 1

%o return factors

%o def a(n):

%o i = 1

%o c = 0

%o while c < n:

%o i += 1

%o p = prime_factors(i)

%o if len(p) > 1 and list(p.keys())[1:]+[1] == list(p.values()):

%o c +=1

%o return i

%o (PARI) is(n)=my(f=factor(n)); if(#f~<2, return(0)); for(i=2,#f~, if(f[i,1]!=f[i-1,2], return(0))); f[#f~,2]==1 \\ _Charles R Greathouse IV_, Oct 22 2017

%o (PARI) get(q,N)=my(v,pq); if(N>>q == 0, return(if(N<1,[],[1]))); v=List([1]); forprime(p=2,min(sqrtnint(N,q),q-1), pq=p^q; u=pq*get(p,N\pq); for(i=1,#u, listput(v,u[i])); u=0); Set(v)

%o list(lim)=my(v=List(),u,t); lim\=1; forprime(q=3,lambertw(log(2)*lim)\log(2), forprime(p=2,min(sqrtnint(lim,q),q-1), t=p^q*q; u=t*get(p,lim\t); for(i=1,#u, listput(v,u[i])); u=0)); Set(v) \\ _Charles R Greathouse IV_, Oct 22 2017

%Y Subsequence of A046099.

%K nonn

%O 1,1

%A _Matthew McCaskill_, Oct 22 2017

%E a(10)-a(30) from _Charles R Greathouse IV_, Oct 22 2017

%E Definition corrected by _Jens Kruse Andersen_, Oct 28 2017