login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294112
Practical numbers z such that z^2 = x^2 + y^2 for some practical numbers x and y with gcd(x,y,z) = 4.
4
20, 100, 260, 340, 500, 740, 820, 1700, 2900, 3380, 4100, 5300, 5780, 6500, 7540, 8500, 8900, 9620, 9860, 10100, 11300, 12580, 13700, 13780, 13940, 14900, 15860, 16820, 17300, 18020, 18500, 18980, 19300, 19700, 22100, 23780, 25220, 27380, 28340, 29380, 30260, 30340, 30500, 30740, 33620, 34340, 35380, 35620, 36500, 37060
OFFSET
1,1
COMMENTS
Conjecture: The sequence has infinitely many terms. Also, there are infinitely many Pythagorean triples (x,y,z) with x,y,z all practical and gcd(x,y,z) = 6.
It is easy to show that there are no Pythagorean triples (x,y,z) with x,y,z all practical and gcd(x,y,z) = 2.
LINKS
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. B. Nathanson (ed.), Combinatorial and Additive Number Theory II: CANT, New York, NY, USA, 2015 and 2016, Springer Proc. in Math. & Stat., Vol. 220, Springer, New York, 2017; arXiv:1211.1588 [math.NT], 2012-2017.
Li-Yuan Wang, Zhi-Wei Sun, On practical numbers of some special forms, arXiv:1809.01532 [math.NT], 2018.
EXAMPLE
a(1) = 20 since 20^2 = 12^2 + 16^2 with 12, 16, 20 all practical and gcd(12,16,20) = 4.
a(2) = 100 since 100^2 = 28^2 + 96^2 with 28, 96, 100 all practical and gcd(28,96,100) = 4.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
f[n_]:=f[n]=FactorInteger[n];
Pow[n_, i_]:=Pow[n, i]=Part[Part[f[n], i], 1]^(Part[Part[f[n], i], 2]);
Con[n_]:=Con[n]=Sum[If[Part[Part[f[n], s+1], 1]<=DivisorSigma[1, Product[Pow[n, i], {i, 1, s}]]+1, 0, 1], {s, 1, Length[f[n]]-1}];
pr[n_]:=pr[n]=n>0&&(n<3||Mod[n, 2]+Con[n]==0);
n=0; Do[If[pr[4m]==False, Goto[aa]]; Do[If[SQ[(4m)^2-x^2]&&GCD[x, 4m, Sqrt[(4m)^2-x^2]]==4&&pr[x]&&pr[Sqrt[(4m)^2-x^2]], n=n+1; Print[n, " ", 4m]; Goto[aa]], {x, 1, Sqrt[8]m]}]; Label[aa], {m, 1, 9265}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Oct 22 2017
STATUS
approved