login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292568
a(n) = a(n-1) + sum of base-1000 digits of a(n-1), a(0)=1.
0
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1049, 1099, 1199, 1399, 1799, 2599, 3200, 3403, 3809, 4621, 5246, 5497, 5999, 7003, 7013, 7033, 7073, 7153, 7313, 7633, 8273, 8554, 9116, 9241, 9491, 9991, 10991, 11992, 12995, 14002, 14018, 14050, 14114, 14242, 14498
OFFSET
0,2
COMMENTS
In Germany you just write Q3 for the base-1000 digit sum (see book: "Taschenbuch der Mathematik" by Bronstein, Semendjajew, Musiol, Mühlig, p. 332) and you need it for the so-called "Teilbarkeitskriterium" for the number 37. If you add Q3 to a number you can also find this rule for the number 37.
Sum of base-1000 digits of m can also be described as "break the digit-string of m into triples starting at the right, and add these 3-digit numbers". For example, 1234567 -> 567 + 234 + (00)1 = 802.
None of the numbers of this sequence is divisible by 3 or 37.
The general form of this sequence is n + sum of base-(10^m) digits of n.
m=1: 1, 2, 4, 8, 16, 23, 28, 38, 49, 62, 70, 77, 91, 101, 103, ... (Cf. A004207.)
m=2: 1, 2, 4, 8, 16, 32, 64, 128, 157, 215, 232, 266, 334, 371, ... (Cf. A286660.)
m=3: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1049, 1099, ... (this sequence)
EXAMPLE
a(16) = 2599 = 2 * 1000^1 + 599 * 1000^0. The sum of digits of a(17 - 1) = 2599 in base 1000 is therefore 2 + 599 = 601. a(17) = a(16) + the sum of digits of a(60) in base 1000 is therefore 2599 + 601 = 3200.
MATHEMATICA
NestList[Total[IntegerDigits[#, 1000]]+#&, 1, 50] (* Harvey P. Dale, Dec 12 2018 *)
PROG
(PARI) a(n) = if (n==0, 1, prev = a(n-1); prev + sumdigits(prev, 1000)); \\ Michel Marcus, Sep 20 2017
CROSSREFS
Sequence in context: A113010 A366855 A330127 * A354600 A056767 A008863
KEYWORD
nonn,base
AUTHOR
Peter Weiss, Sep 19 2017
STATUS
approved