OFFSET
0,2
COMMENTS
In Germany you just write Q3 for the base-1000 digit sum (see book: "Taschenbuch der Mathematik" by Bronstein, Semendjajew, Musiol, Mühlig, p. 332) and you need it for the so-called "Teilbarkeitskriterium" for the number 37. If you add Q3 to a number you can also find this rule for the number 37.
Sum of base-1000 digits of m can also be described as "break the digit-string of m into triples starting at the right, and add these 3-digit numbers". For example, 1234567 -> 567 + 234 + (00)1 = 802.
None of the numbers of this sequence is divisible by 3 or 37.
The general form of this sequence is n + sum of base-(10^m) digits of n.
m=1: 1, 2, 4, 8, 16, 23, 28, 38, 49, 62, 70, 77, 91, 101, 103, ... (Cf. A004207.)
m=2: 1, 2, 4, 8, 16, 32, 64, 128, 157, 215, 232, 266, 334, 371, ... (Cf. A286660.)
m=3: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1049, 1099, ... (this sequence)
EXAMPLE
a(16) = 2599 = 2 * 1000^1 + 599 * 1000^0. The sum of digits of a(17 - 1) = 2599 in base 1000 is therefore 2 + 599 = 601. a(17) = a(16) + the sum of digits of a(60) in base 1000 is therefore 2599 + 601 = 3200.
MATHEMATICA
NestList[Total[IntegerDigits[#, 1000]]+#&, 1, 50] (* Harvey P. Dale, Dec 12 2018 *)
PROG
(PARI) a(n) = if (n==0, 1, prev = a(n-1); prev + sumdigits(prev, 1000)); \\ Michel Marcus, Sep 20 2017
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Peter Weiss, Sep 19 2017
STATUS
approved