The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292565 Take 0, skip 3 * 1 + 1, take 1, skip 3 * 2 + 1, take 2, skip 3 * 3 + 1, ... 1
 5, 13, 14, 25, 26, 27, 41, 42, 43, 44, 61, 62, 63, 64, 65, 85, 86, 87, 88, 89, 90, 113, 114, 115, 116, 117, 118, 119, 145, 146, 147, 148, 149, 150, 151, 152, 181, 182, 183, 184, 185, 186, 187, 188, 189, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 265 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Michael Boardman, Proof Without Words: Pythagorean Runs, Math. Mag., 73 (2000), 59. FORMULA Sum_{n = (k-1)*k/2+1 .. k*(k+1)/2} a(n)^2 = Sum_{n = k*(k+1)/2 .. (k+1)*(k+2)/2-1} A292564(n)^2 = A059255(k) for k > 0. a(n) = n + 4 + (3k^2 + 11k)/2 where k = floor((sqrt(2*n) - 1/2)). - Jon E. Schoenfield, Sep 30 2017 EXAMPLE k|            A292564(n)^2          |            a(n)^2            |       Sum    --------------------------------------------------------------------------------    0|                              0^2                                     (=    0)    1|                       3^2 +  4^2 =  5^2                              (=   25)    2|               10^2 + 11^2 + 12^2 = 13^2 + 14^2                       (=  365)    3|        21^2 + 22^2 + 23^2 + 24^2 = 25^2 + 26^2 + 27^2                (= 2030)    4| 36^2 + 37^2 + 38^2 + 39^2 + 40^2 = 41^2 + 42^2 + 43^2 + 44^2         (= 7230)     | ... Row 3 is proved by the following: (25^2 - 24^2) + (26^2 - 23^2) + (27^2 - 22^2) = 49*1 + 49*3 + 49*5 = 7^2*3^2 = 21^2. Row k is proved by the same way. MATHEMATICA Block[{s = Array[{# - 1, 3 # + 1} &, 12], r}, r = Range@ Total@ Flatten@ s; Map[Function[{a, b}, {First@ #, Set[r, Drop[Last@ #, b]]} &@ TakeDrop[r, a]] @@ # &, s][[All, 1]] // Flatten] (* Michael De Vlieger, Sep 25 2017 *) CROSSREFS Cf. A000217, A059255, A063657, A292564. Sequence in context: A309621 A191382 A291792 * A174069 A020996 A090759 Adjacent sequences:  A292562 A292563 A292564 * A292566 A292567 A292568 KEYWORD nonn,easy AUTHOR Seiichi Manyama, Sep 19 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 5 04:03 EDT 2021. Contains 346457 sequences. (Running on oeis4.)