OFFSET
0,4
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
Marko Riedel, Trees with bounded degree.
Marko Riedel, Maple code for sequences A001190, A000598, A036718, A036721, A036722, A182378, A292553, A292554, A292555, A292556 (FEQ 1).
Marko Riedel, Maple code for sequences A001190, A000598, A036718, A036721, A036722, A182378, A292553, A292554, A292555, A292556 (FEQ 2)
Marko Riedel, Maple code (FEQ 2) optimized for speed.
FORMULA
Functional equation of G.f. is T(z) = z + z*Sum_{q=1..8} Z(S_q)(T(z)) with Z(S_q) the cycle index of the symmetric group. Alternate FEQ is T(z) = 1 + z*Z(S_8)(T(z)).
a(n) = Sum_{j=1..8} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 20 2017
a(n) / a(n+1) ~ 0.338386042364849957035744926227166370702775721795018600630554... - Robert A. Russell, Feb 11 2023
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
end:
a:= n-> `if`(n=0, 1, b(n-1$2, 8$2)):
seq(a(n), n=0..35); # Alois P. Heinz, Sep 20 2017
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i < 1, 0, Sum[ Binomial[b[i - 1, i - 1, k, k] + j - 1, j]*b[n - i*j, i - 1, t - j, k], {j, 0, Min[t, n/i]}]]];
a[n_] := If[n == 0, 1, b[n - 1, n - 1, 8, 8]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Jun 04 2018, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Marko Riedel, Sep 18 2017
STATUS
approved