This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A036718 Number of rooted trees where each node has at most 4 children. 12
 1, 1, 1, 2, 4, 9, 19, 45, 106, 260, 643, 1624, 4138, 10683, 27790, 72917, 192548, 511624, 1366424, 3666930, 9881527, 26730495, 72556208, 197562840, 539479354, 1477016717, 4053631757, 11149957667, 30732671572, 84871652538, 234802661446, 650684226827 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 REFERENCES M. R. Bremner, H. A. Eigendy, Alternating quaternary algebra structures on irreducible representations of sl_2(C), Lin. Alg. Applic. 433 (2010) 1686-1705 doi:10.1016/j.laa.2010.06.014 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 F. Ruskey, Information on Rooted Trees FORMULA G.f. satisfies A(x) = 1 + x*cycle_index(Sym(4), A(x)). a(n) = Sum_{j=1..4} A244372(n,j) for n>0, a(0) = 1. - Alois P. Heinz, Sep 19 2017 EXAMPLE From Joerg Arndt, Feb 25 2017: (Start) The a(5) = 9 rooted trees with 5 nodes and out-degrees <= 4 are: :         level sequence    out-degrees (dots for zeros) :     1:  [ 0 1 2 3 4 ]    [ 1 1 1 1 . ] :  O--o--o--o--o : :     2:  [ 0 1 2 3 3 ]    [ 1 1 2 . . ] :  O--o--o--o :        .--o : :     3:  [ 0 1 2 3 2 ]    [ 1 2 1 . . ] :  O--o--o--o :     .--o : :     4:  [ 0 1 2 3 1 ]    [ 2 1 1 . . ] :  O--o--o--o :  .--o : :     5:  [ 0 1 2 2 2 ]    [ 1 3 . . . ] :  O--o--o :     .--o :     .--o : :     6:  [ 0 1 2 2 1 ]    [ 2 2 . . . ] :  O--o--o :     .--o :  .--o : :     7:  [ 0 1 2 1 2 ]    [ 2 1 . 1 . ] :  O--o--o :  .--o--o : :     8:  [ 0 1 2 1 1 ]    [ 3 1 . . . ] :  O--o--o :  .--o :  .--o : :     9:  [ 0 1 1 1 1 ]    [ 4 . . . . ] :  O--o :  .--o :  .--o :  .--o (End) MAPLE A := 1; f := proc(n) global A; local A2, A3, A4; A2 := subs(x=x^2, A); A3 := subs(x=x^3, A); A4 := subs(x=x^4, A); coeff(series( 1+x*( (A^4+3*A2^2+8*A*A3+6*A^2*A2+6*A4)/2 ), x, n+1), x, n); end; for n from 1 to 50 do A := series(A+f(n)*x^n, x, n +1); od: A; MATHEMATICA a = 1; f[n_] := Module[{a2, a3, a4}, a2 = a /. x -> x^2; a3 = a /. x -> x^3; a4 = a /. x -> x^4; Coefficient[ Series[ 1 + x*(a^4 + 3*a2^2 + 8*a*a3 + 6*a^2*a2 + 6*a4)/24, {x, 0, n + 1}] // Normal, x, n]]; For[n = 1, n <= 30, n++, a = Series[a + f[n]*x^n, {x, 0, n + 1}] // Normal]; CoefficientList[a, x] (* Jean-François Alcover, Jan 16 2013, after Maple *) CROSSREFS Cf. A000081, A036717, A036719, A036720, A036721, A036722, A182378, A244372. Cf. A292553, A292554, A292555, A292556. Column k=4 of A299038. Sequence in context: A291648 A036613 A036614 * A134964 A318798 A318851 Adjacent sequences:  A036715 A036716 A036717 * A036719 A036720 A036721 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS Better description from Frank Ruskey, Sep 23 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 21:31 EDT 2018. Contains 316404 sequences. (Running on oeis4.)