OFFSET
0,19
LINKS
Alois P. Heinz, Antidiagonals n = 0..140, flattened
FORMULA
A(n,k) = Sum_{i=0..k} A244372(n,i) for n>0, A(0,k) = 1.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, ...
0, 1, 6, 8, 9, 9, 9, 9, 9, 9, 9, ...
0, 1, 11, 17, 19, 20, 20, 20, 20, 20, 20, ...
0, 1, 23, 39, 45, 47, 48, 48, 48, 48, 48, ...
0, 1, 46, 89, 106, 112, 114, 115, 115, 115, 115, ...
0, 1, 98, 211, 260, 277, 283, 285, 286, 286, 286, ...
0, 1, 207, 507, 643, 693, 710, 716, 718, 719, 719, ...
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
end:
A:= (n, k)-> `if`(n=0, 1, b(n-1$2, k$2)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];
A[n_, k_] := If[n == 0, 1, b[n - 1, n - 1, k, k]];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 04 2018, from Maple *)
PROG
(Python)
from sympy import binomial
from sympy.core.cache import cacheit
@cacheit
def b(n, i, t, k): return 1 if n==0 else 0 if i<1 else sum([binomial(b(i-1, i-1, k, k)+j-1, j)*b(n-i*j, i-1, t-j, k) for j in range(min(t, n//i)+1)])
def A(n, k): return 1 if n==0 else b(n-1, n-1, k, k)
for d in range(15): print([A(n, d-n) for n in range(d+1)]) # Indranil Ghosh, Mar 02 2018, after Maple code
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 01 2018
STATUS
approved