login
A299038
Number A(n,k) of rooted trees with n nodes where each node has at most k children; square array A(n,k), n>=0, k>=0, read by antidiagonals.
15
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 4, 6, 1, 0, 1, 1, 1, 2, 4, 8, 11, 1, 0, 1, 1, 1, 2, 4, 9, 17, 23, 1, 0, 1, 1, 1, 2, 4, 9, 19, 39, 46, 1, 0, 1, 1, 1, 2, 4, 9, 20, 45, 89, 98, 1, 0, 1, 1, 1, 2, 4, 9, 20, 47, 106, 211, 207, 1, 0
OFFSET
0,19
LINKS
FORMULA
A(n,k) = Sum_{i=0..k} A244372(n,i) for n>0, A(0,k) = 1.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 4, 4, 4, 4, 4, 4, 4, 4, ...
0, 1, 6, 8, 9, 9, 9, 9, 9, 9, 9, ...
0, 1, 11, 17, 19, 20, 20, 20, 20, 20, 20, ...
0, 1, 23, 39, 45, 47, 48, 48, 48, 48, 48, ...
0, 1, 46, 89, 106, 112, 114, 115, 115, 115, 115, ...
0, 1, 98, 211, 260, 277, 283, 285, 286, 286, 286, ...
0, 1, 207, 507, 643, 693, 710, 716, 718, 719, 719, ...
MAPLE
b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
`if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*
b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))
end:
A:= (n, k)-> `if`(n=0, 1, b(n-1$2, k$2)):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];
A[n_, k_] := If[n == 0, 1, b[n - 1, n - 1, k, k]];
Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jun 04 2018, from Maple *)
PROG
(Python)
from sympy import binomial
from sympy.core.cache import cacheit
@cacheit
def b(n, i, t, k): return 1 if n==0 else 0 if i<1 else sum([binomial(b(i-1, i-1, k, k)+j-1, j)*b(n-i*j, i-1, t-j, k) for j in range(min(t, n//i)+1)])
def A(n, k): return 1 if n==0 else b(n-1, n-1, k, k)
for d in range(15): print([A(n, d-n) for n in range(d+1)]) # Indranil Ghosh, Mar 02 2018, after Maple code
CROSSREFS
Main diagonal gives A000081 for n>0.
A(2n,n) gives A299039.
Cf. A244372.
Sequence in context: A003137 A353048 A006842 * A273693 A219967 A060505
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 01 2018
STATUS
approved