login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A299038 Number A(n,k) of rooted trees with n nodes where each node has at most k children; square array A(n,k), n>=0, k>=0, read by antidiagonals. 12
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 4, 6, 1, 0, 1, 1, 1, 2, 4, 8, 11, 1, 0, 1, 1, 1, 2, 4, 9, 17, 23, 1, 0, 1, 1, 1, 2, 4, 9, 19, 39, 46, 1, 0, 1, 1, 1, 2, 4, 9, 20, 45, 89, 98, 1, 0, 1, 1, 1, 2, 4, 9, 20, 47, 106, 211, 207, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,19

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

A(n,k) = Sum_{i=0..k} A244372(n,i) for n>0, A(0,k) = 1.

EXAMPLE

Square array A(n,k) begins:

  1, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...

  1, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...

  0, 1,   1,   1,   1,   1,   1,   1,   1,   1,   1, ...

  0, 1,   2,   2,   2,   2,   2,   2,   2,   2,   2, ...

  0, 1,   3,   4,   4,   4,   4,   4,   4,   4,   4, ...

  0, 1,   6,   8,   9,   9,   9,   9,   9,   9,   9, ...

  0, 1,  11,  17,  19,  20,  20,  20,  20,  20,  20, ...

  0, 1,  23,  39,  45,  47,  48,  48,  48,  48,  48, ...

  0, 1,  46,  89, 106, 112, 114, 115, 115, 115, 115, ...

  0, 1,  98, 211, 260, 277, 283, 285, 286, 286, 286, ...

  0, 1, 207, 507, 643, 693, 710, 716, 718, 719, 719, ...

MAPLE

b:= proc(n, i, t, k) option remember; `if`(n=0, 1,

      `if`(i<1, 0, add(binomial(b((i-1)$2, k$2)+j-1, j)*

       b(n-i*j, i-1, t-j, k), j=0..min(t, n/i))))

    end:

A:= (n, k)-> `if`(n=0, 1, b(n-1$2, k$2)):

seq(seq(A(n, d-n), n=0..d), d=0..14);

MATHEMATICA

b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[ b[i-1, i-1, k, k]+j-1, j]*b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]]];

A[n_, k_] := If[n == 0, 1, b[n - 1, n - 1, k, k]];

Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-Fran├žois Alcover, Jun 04 2018, from Maple *)

PROG

(Python)

from sympy import binomial

from sympy.core.cache import cacheit

@cacheit

def b(n, i, t, k): return 1 if n==0 else 0 if i<1 else sum([binomial(b(i-1, i-1, k, k)+j-1, j)*b(n-i*j, i-1, t-j, k) for j in range(min(t, n//i)+1)])

def A(n, k): return 1 if n==0 else b(n-1, n-1, k, k)

for d in range(15): print([A(n, d-n) for n in range(d+1)]) # Indranil Ghosh, Mar 02 2018, after Maple code

CROSSREFS

Columns k=1-11 give: A000012, A001190(n+1), A000598, A036718, A036721, A036722, A182378, A292553, A292554, A292555, A292556.

Main diagonal gives A000081 for n>0.

A(2n,n) gives A299039.

Cf. A244372.

Sequence in context: A054635 A003137 A006842 * A273693 A219967 A060505

Adjacent sequences:  A299035 A299036 A299037 * A299039 A299040 A299041

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Feb 01 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 11:13 EDT 2018. Contains 315270 sequences. (Running on oeis4.)