login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A273693
Number A(n,k) of k-ary heaps on n elements; square array A(n,k), n>=0, k>=0, read by antidiagonals.
12
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 0, 1, 1, 1, 2, 3, 1, 0, 1, 1, 1, 2, 6, 8, 1, 0, 1, 1, 1, 2, 6, 12, 20, 1, 0, 1, 1, 1, 2, 6, 24, 40, 80, 1, 0, 1, 1, 1, 2, 6, 24, 60, 180, 210, 1, 0, 1, 1, 1, 2, 6, 24, 120, 240, 630, 896, 1, 0, 1, 1, 1, 2, 6, 24, 120, 360, 1260, 3360, 3360, 1, 0
OFFSET
0,19
LINKS
Wikipedia, D-ary heap
EXAMPLE
A(4,2) = 3: 1234, 1243, 1324.
A(5,2) = 8: 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254.
A(5,3) = 12: 12345, 12354, 12435, 12453, 12534, 12543, 13245, 13254, 13425, 13524, 14235, 14325.
A(6,3) = 40: 123456, 123465, 123546, 123564, 123645, 123654, 124356, 124365, 124536, 124563, 124635, 124653, 125346, 125364, 125436, 125463, 125634, 125643, 126345, 126354, 126435, 126453, 126534, 126543, 132456, 132465, 132546, 132564, 132645, 132654, 134256, 134265, 135246, 135264, 136245, 136254, 142356, 142365, 143256, 143265.
(The examples use min-heaps.)
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 1, 3, 6, 6, 6, 6, 6, ...
0, 1, 8, 12, 24, 24, 24, 24, ...
0, 1, 20, 40, 60, 120, 120, 120, ...
0, 1, 80, 180, 240, 360, 720, 720, ...
0, 1, 210, 630, 1260, 1680, 2520, 5040, ...
MAPLE
with(combinat):
A:= proc(n, k) option remember; local h, i, x, y, z;
if n<2 then 1 elif k<2 then k
else h:= ilog[k]((k-1)*n+1);
if k^h=(k-1)*n+1 then A((n-1)/k, k)^k*
multinomial(n-1, ((n-1)/k)$k)
else x, y:=(k^h-1)/(k-1), (k^(h-1)-1)/(k-1);
for i from 0 do z:= (n-1)-(k-1-i)*y-i*x;
if y<=z and z<=x then A(y, k)^(k-1-i)*
multinomial(n-1, y$(k-1-i), x$i, z)*
A(x, k)^i*A(z, k); break fi
od
fi fi
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
multinomial[n_, k_] := n!/Times @@ (k!); A[n_, k_] := A[n, k] = Module[{h, i, x, y, z}, Which[n<2, 1, k<2, k, True, h = Floor @ Log[k, (k-1)*n+1]; If[k^h == (k-1)*n+1, A[(n-1)/k, k]^k*multinomial[n-1, Array[((n-1)/k)&, k]], {x, y} = {(k^h-1)/(k-1), (k^(h-1)-1)/(k-1)}; For[i = 0, True, i++, z = (n-1)-(k-1-i)*y-i*x; If[y<=z && z<=x, A[y, k]^(k-1-i)*multinomial[n-1, Join[Array[y&, k-1-i], Array[x&, i], {z}]]*A[x, k]^i*A[z, k] // Return]] ]]]; Table[A[n, d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 13 2017, translated from Maple *)
CROSSREFS
Main diagonal gives: A000142(n-1) for n>0.
Cf. A273712.
Sequence in context: A353048 A006842 A299038 * A219967 A060505 A336727
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 28 2016
STATUS
approved