login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292074
Number of minimum dominating sets in the n X n rook complement graph.
3
1, 4, 48, 240, 1000, 3300, 9114, 21952, 47520, 94500, 175450, 307824, 515112, 828100, 1286250, 1939200, 2848384, 4088772, 5750730, 7942000, 10789800, 14443044, 19074682, 24884160, 32100000, 40982500, 51826554, 64964592, 80769640, 99658500, 122095050
OFFSET
1,2
COMMENTS
The minimum dominating sets are the minimal dominating sets (A291623) of size equal to the domination number. For n > 2, the domination number is 3. For n > 3, the minimal dominating sets of size 3 are either any three vertices such that no two are in the same row or column or any vertex with another in the same row and a third in the same column. For n = 3, the case of all vertices in a single row or column also needs to be included. - Andrew Howroyd, Sep 13 2017
LINKS
Eric Weisstein's World of Mathematics, Minimum Dominating Set
Eric Weisstein's World of Mathematics, Rook Complement Graph
FORMULA
G.f.: x*(-1 + 3*x - 41*x^2 + 47*x^3 - 223*x^4 + 221*x^5 - 217*x^6 + 127*x^7 - 42*x^8 + 6*x^9)/(-1 + x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 10.
a(n) = 6*binomial(n, 3)^2 + n^2*(n-1)^2 for n > 3. - Andrew Howroyd, Sep 13 2017
MATHEMATICA
Join[{1, 4, 48}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {240, 1000, 3300, 9114, 21952, 47520, 94500}, 20]]
Table[Piecewise[{{1, n == 1}, {48, n == 3}}, 6 Binomial[n, 3]^2 + n^2 (n - 1)^2], {n, 20}]
CoefficientList[Series[(-1 + 3 x - 41 x^2 + 47 x^3 - 223 x^4 + 221 x^5 - 217 x^6 + 127 x^7 - 42 x^8 + 6 x^9)/(-1 + x)^7, {x, 0, 20}], x]
PROG
(PARI) a(n) = if(n<4, [1, 4, 48][n], 6*binomial(n, 3)^2 + n^2*(n-1)^2); \\ Andrew Howroyd, Sep 13 2017
CROSSREFS
Sequence in context: A273335 A275138 A273767 * A274729 A217153 A129002
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 12 2017
EXTENSIONS
Terms a(6) and beyond from Andrew Howroyd, Sep 13 2017
STATUS
approved