The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A129002 a(n) = (n^3 + n^2)*2^n. 11
 4, 48, 288, 1280, 4800, 16128, 50176, 147456, 414720, 1126400, 2973696, 7667712, 19382272, 48168960, 117964800, 285212672, 681836544, 1613758464, 3785359360, 8808038400, 20346568704, 46690992128, 106501767168, 241591910400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Number of paths along four vertices contained within the n+1 dimensional hypercube graph. - Ben Eck, Mar 30 2022 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16). FORMULA G.f.: 4x*(1+4*x)/(1-2*x)^4. - Vincenzo Librandi, Feb 12 2013 a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Vincenzo Librandi, Feb 12 2013 Sum_{n>=1} 1/a(n) = Pi^2/12 - 1 + log(2) - log(2)^2/2. - Amiram Eldar, Aug 05 2020 MATHEMATICA CoefficientList[Series[4 (1 + 4 x)/(1 - 2 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *) LinearRecurrence[{8, -24, 32, -16}, {4, 48, 288, 1280}, 30] (* Harvey P. Dale, Aug 21 2021 *) PROG (Magma) [(n^3+n^2)*2^n: n in [1..25]]; /* or */ I:=[4, 48, 288, 1280]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013 (PARI) a(n)=(n^3+n^2)<

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 03:51 EDT 2024. Contains 375995 sequences. (Running on oeis4.)