login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129002
a(n) = (n^3 + n^2)*2^n.
11
4, 48, 288, 1280, 4800, 16128, 50176, 147456, 414720, 1126400, 2973696, 7667712, 19382272, 48168960, 117964800, 285212672, 681836544, 1613758464, 3785359360, 8808038400, 20346568704, 46690992128, 106501767168, 241591910400
OFFSET
1,1
COMMENTS
Number of paths along four vertices contained within the n+1 dimensional hypercube graph. - Ben Eck, Mar 30 2022
FORMULA
G.f.: 4x*(1+4*x)/(1-2*x)^4. - Vincenzo Librandi, Feb 12 2013
a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4). - Vincenzo Librandi, Feb 12 2013
Sum_{n>=1} 1/a(n) = Pi^2/12 - 1 + log(2) - log(2)^2/2. - Amiram Eldar, Aug 05 2020
MATHEMATICA
CoefficientList[Series[4 (1 + 4 x)/(1 - 2 x)^4, {x, 0, 30}], x] (* Vincenzo Librandi, Feb 12 2013 *)
LinearRecurrence[{8, -24, 32, -16}, {4, 48, 288, 1280}, 30] (* Harvey P. Dale, Aug 21 2021 *)
PROG
(Magma) [(n^3+n^2)*2^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
(Magma) I:=[4, 48, 288, 1280]; [n le 4 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
(PARI) a(n)=(n^3+n^2)<<n \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Sequence in context: A292074 A274729 A217153 * A291623 A144704 A091904
KEYWORD
nonn,easy,changed
AUTHOR
Mohammad K. Azarian, May 01 2007
STATUS
approved