login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291623
Number of maximal irredundant and minimal dominating sets in the n X n rook complement graph.
4
1, 4, 48, 320, 1610, 6012, 17948, 45488, 101970, 207920, 393272, 699888, 1184378, 1921220, 3006180, 4560032, 6732578, 9706968, 13704320, 18988640, 25872042, 34720268, 45958508, 60077520, 77640050, 99287552, 125747208, 157839248, 196484570, 242712660
OFFSET
1,2
COMMENTS
From Andrew Howroyd, Aug 30 2017: (Start)
For n > 2 the maximal irredundant sets are:
- all vertices in any single row or column,
- any three vertices such that no two are in the same row or column,
- any vertex with another in the same row and a third in the same column,
- two vertices in each of two rows/columns and none in the same column/row. (End)
LINKS
Eric Weisstein's World of Mathematics, Maximal Irredundant Set
Eric Weisstein's World of Mathematics, Minimal Dominating Set
Eric Weisstein's World of Mathematics, Rook Complement Graph
FORMULA
From Andrew Howroyd, Aug 30 2017: (Start)
a(n) = 2*n + 6*binomial(n,3)^2 + n^2*(n-1)^2 + 12*binomial(n,4)*binomial(n,2) for n > 2.
a(n) = (5*n^6 - 33*n^5 + 89*n^4 - 99*n^3 + 38*n^2 + 24*n) / 12 for n > 2.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 9.
G.f.: x*(1 - 3*x + 41*x^2 + 33*x^3 + 273*x^4 - 99*x^5 + 77*x^6 - 27*x^7 + 4*x^8)/(1-x)^7.
(End)
MATHEMATICA
Table[Piecewise[{{1, n == 1}, {4, n == 2}}, 2 n + 6 Binomial[n, 3]^2 + n^2 (n - 1)^2 + 12 Binomial[n, 4] Binomial[n, 2]], {n, 20}]
Join[{1, 4}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {48, 320, 1610, 6012, 17948, 45488, 101970}, 18]]
CoefficientList[Series[(-1 + 3 x - 41 x^2 - 33 x^3 - 273 x^4 + 99 x^5 - 77 x^6 + 27 x^7 - 4 x^8)/(-1 + x)^7, {x, 0, 20}], x]
PROG
(PARI) a(n) = if(n<3, [1, 4][n], (5*n^6 - 33*n^5 + 89*n^4 - 99*n^3 + 38*n^2 + 24*n) / 12); \\ Andrew Howroyd, Aug 30 2017
CROSSREFS
Cf. A291622.
Sequence in context: A274729 A217153 A129002 * A144704 A091904 A192831
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Aug 28 2017
EXTENSIONS
Terms a(6) and beyond from Andrew Howroyd, Aug 30 2017
STATUS
approved