Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 04 2021 20:08:45
%S 1,4,48,320,1610,6012,17948,45488,101970,207920,393272,699888,1184378,
%T 1921220,3006180,4560032,6732578,9706968,13704320,18988640,25872042,
%U 34720268,45958508,60077520,77640050,99287552,125747208,157839248,196484570,242712660
%N Number of maximal irredundant and minimal dominating sets in the n X n rook complement graph.
%C From _Andrew Howroyd_, Aug 30 2017: (Start)
%C For n > 2 the maximal irredundant sets are:
%C - all vertices in any single row or column,
%C - any three vertices such that no two are in the same row or column,
%C - any vertex with another in the same row and a third in the same column,
%C - two vertices in each of two rows/columns and none in the same column/row. (End)
%H Andrew Howroyd, <a href="/A291623/b291623.txt">Table of n, a(n) for n = 1..500</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MaximalIrredundantSet.html">Maximal Irredundant Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalDominatingSet.html">Minimal Dominating Set</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>
%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7, -21, 35, -35, 21, -7, 1).
%F From _Andrew Howroyd_, Aug 30 2017: (Start)
%F a(n) = 2*n + 6*binomial(n,3)^2 + n^2*(n-1)^2 + 12*binomial(n,4)*binomial(n,2) for n > 2.
%F a(n) = (5*n^6 - 33*n^5 + 89*n^4 - 99*n^3 + 38*n^2 + 24*n) / 12 for n > 2.
%F a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n > 9.
%F G.f.: x*(1 - 3*x + 41*x^2 + 33*x^3 + 273*x^4 - 99*x^5 + 77*x^6 - 27*x^7 + 4*x^8)/(1-x)^7.
%F (End)
%t Table[Piecewise[{{1, n == 1}, {4, n == 2}}, 2 n + 6 Binomial[n, 3]^2 + n^2 (n - 1)^2 + 12 Binomial[n, 4] Binomial[n, 2]], {n, 20}]
%t Join[{1, 4}, LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {48, 320, 1610, 6012, 17948, 45488, 101970}, 18]]
%t CoefficientList[Series[(-1 + 3 x - 41 x^2 - 33 x^3 - 273 x^4 + 99 x^5 - 77 x^6 + 27 x^7 - 4 x^8)/(-1 + x)^7, {x, 0, 20}], x]
%o (PARI) a(n) = if(n<3, [1,4][n], (5*n^6 - 33*n^5 + 89*n^4 - 99*n^3 + 38*n^2 + 24*n) / 12); \\ _Andrew Howroyd_, Aug 30 2017
%Y Cf. A291622.
%K nonn
%O 1,2
%A _Eric W. Weisstein_, Aug 28 2017
%E Terms a(6) and beyond from _Andrew Howroyd_, Aug 30 2017