login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129004
a(n) = (n^3 + n^2)*4^n.
1
8, 192, 2304, 20480, 153600, 1032192, 6422528, 37748736, 212336640, 1153433600, 6090129408, 31406948352, 158779572224, 789200240640, 3865470566400, 18691697672192, 89369679495168, 423037098786816, 1984618488135680, 9235897673318400, 42669847250731008, 195836215046438912
OFFSET
1,1
FORMULA
G.f.: 8*x*(1+8*x)/(1-4*x)^4. - R. J. Mathar, Dec 19 2008
a(1)=8, a(2)=192, a(3)=2304, a(4)=20480, a(n)=16*a(n-1)-96*a(n-2)+ 256*a(n-3)-256*a(n-4). - Harvey P. Dale, May 12 2011
a(n) = 8*(A038846(n-1)+8*A038846(n-2)), with A038846(-1)=0. - Bruno Berselli, Feb 12 2013
E.g.f.: 8*exp(4*x)*x*(1 + 8*x + 8*x^2). - Stefano Spezia, Sep 02 2024
MATHEMATICA
Table[(n^3+n^2)4^n, {n, 20}] (* or *) LinearRecurrence[{16, -96, 256, -256}, {8, 192, 2304, 20480}, 20] (* Harvey P. Dale, May 12 2011 *)
PROG
(Magma) [(n^3+n^2)*4^n: n in [1..25]]; // Vincenzo Librandi, Feb 12 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, May 01 2007
STATUS
approved