login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275995
Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.
2
8, 192, 640, 14336, 18432, 180224, 425984, 15728640, 8912896, 79691776, 176160768, 3087007744, 3355443200, 28991029248, 62277025792, 4260607557632, 1133871366144, 9620726743040, 20340965113856, 343047627866112, 360639813910528, 3025855999639552, 6333186975989760, 211669182486413312
OFFSET
1,1
COMMENTS
-log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion
(t1/n + t2/n^3 + t3/n^5 + ...) where the denominators of the coefficients t1, t2, t3, ... are given by this sequence.
The numerators are sequence A275994.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..500 (terms 1..64 from Richard P. Brent)
FORMULA
a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).
EXAMPLE
For n = 4, a(4) = denominator(-17/13336) = 13336.
MATHEMATICA
Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* G. C. Greubel, Feb 15 2017 *)
PROG
(Magma) [Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]];
(PARI) a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016
CROSSREFS
Numerators are sequence A275994.
Sequence in context: A366150 A251669 A158654 * A129004 A267948 A339487
KEYWORD
nonn,frac
AUTHOR
Richard P. Brent, Sep 13 2016
STATUS
approved