OFFSET
1,1
COMMENTS
-log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion
(t1/n + t2/n^3 + t3/n^5 + ...) where the denominators of the coefficients t1, t2, t3, ... are given by this sequence.
The numerators are sequence A275994.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..500 (terms 1..64 from Richard P. Brent)
R. P. Brent, Asymptotic approximation of central binomial coefficients with rigorous error bounds, arXiv:1608.04834 [math.NA], 2016.
FORMULA
a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).
EXAMPLE
For n = 4, a(4) = denominator(-17/13336) = 13336.
MATHEMATICA
Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* G. C. Greubel, Feb 15 2017 *)
PROG
(Magma) [Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]];
(PARI) a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Richard P. Brent, Sep 13 2016
STATUS
approved