login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275995 Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient. 2
8, 192, 640, 14336, 18432, 180224, 425984, 15728640, 8912896, 79691776, 176160768, 3087007744, 3355443200, 28991029248, 62277025792, 4260607557632, 1133871366144, 9620726743040, 20340965113856, 343047627866112, 360639813910528, 3025855999639552, 6333186975989760, 211669182486413312
(list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
-log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion
(t1/n + t2/n^3 + t3/n^5 + ...) where the denominators of the coefficients t1, t2, t3, ... are given by this sequence.
The numerators are sequence A275994.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..500 (terms 1..64 from Richard P. Brent)
FORMULA
a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).
EXAMPLE
For n = 4, a(4) = denominator(-17/13336) = 13336.
MATHEMATICA
Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* G. C. Greubel, Feb 15 2017 *)
PROG
(Magma) [Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]];
(PARI) a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016
CROSSREFS
Numerators are sequence A275994.
Sequence in context: A366150 A251669 A158654 * A129004 A267948 A339487
KEYWORD
nonn,frac
AUTHOR
Richard P. Brent, Sep 13 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 11:53 EDT 2024. Contains 376000 sequences. (Running on oeis4.)