|
|
A275995
|
|
Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.
|
|
2
|
|
|
8, 192, 640, 14336, 18432, 180224, 425984, 15728640, 8912896, 79691776, 176160768, 3087007744, 3355443200, 28991029248, 62277025792, 4260607557632, 1133871366144, 9620726743040, 20340965113856, 343047627866112, 360639813910528, 3025855999639552, 6333186975989760, 211669182486413312
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
-log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion
(t1/n + t2/n^3 + t3/n^5 + ...) where the denominators of the coefficients t1, t2, t3, ... are given by this sequence.
The numerators are sequence A275994.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).
|
|
EXAMPLE
|
For n = 4, a(4) = denominator(-17/13336) = 13336.
|
|
MATHEMATICA
|
Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* G. C. Greubel, Feb 15 2017 *)
|
|
PROG
|
(Magma) [Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]];
(PARI) a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ Joerg Arndt, Sep 14 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|