login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.
2

%I #26 Sep 08 2022 08:46:17

%S 8,192,640,14336,18432,180224,425984,15728640,8912896,79691776,

%T 176160768,3087007744,3355443200,28991029248,62277025792,

%U 4260607557632,1133871366144,9620726743040,20340965113856,343047627866112,360639813910528,3025855999639552,6333186975989760,211669182486413312

%N Denominators of coefficients in the asymptotic expansion of the logarithm of the central binomial coefficient.

%C -log(binomial(2n,n)) + log(4^n/sqrt(Pi*n)) has an asymptotic expansion

%C (t1/n + t2/n^3 + t3/n^5 + ...) where the denominators of the coefficients t1, t2, t3, ... are given by this sequence.

%C The numerators are sequence A275994.

%H G. C. Greubel, <a href="/A275995/b275995.txt">Table of n, a(n) for n = 1..500</a> (terms 1..64 from Richard P. Brent)

%H R. P. Brent, <a href="http://arxiv.org/abs/1608.04834">Asymptotic approximation of central binomial coefficients with rigorous error bounds</a>, arXiv:1608.04834 [math.NA], 2016.

%F a(n) = denominator((1-4^(-n))*Bernoulli(2*n)/(n*(2*n-1))).

%e For n = 4, a(4) = denominator(-17/13336) = 13336.

%t Table[Denominator[(1 - 4^(-n)) BernoulliB[2 n]/(n*(2*n - 1))], {n, 50}] (* _G. C. Greubel_, Feb 15 2017 *)

%o (Magma) [Denominator((4^n-1)*BernoulliNumber(2*n)/4^n/n/(2*n-1)): n in [1..30]];

%o (PARI) a(n) = denominator((1-4^(-n))*bernfrac(2*n)/(n*(2*n-1))); \\ _Joerg Arndt_, Sep 14 2016

%Y Numerators are sequence A275994.

%K nonn,frac

%O 1,1

%A _Richard P. Brent_, Sep 13 2016