login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n^3 + n^2)*4^n.
1

%I #29 Sep 02 2024 15:38:30

%S 8,192,2304,20480,153600,1032192,6422528,37748736,212336640,

%T 1153433600,6090129408,31406948352,158779572224,789200240640,

%U 3865470566400,18691697672192,89369679495168,423037098786816,1984618488135680,9235897673318400,42669847250731008,195836215046438912

%N a(n) = (n^3 + n^2)*4^n.

%H Vincenzo Librandi, <a href="/A129004/b129004.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (16,-96,256,-256).

%F G.f.: 8*x*(1+8*x)/(1-4*x)^4. - _R. J. Mathar_, Dec 19 2008

%F a(1)=8, a(2)=192, a(3)=2304, a(4)=20480, a(n)=16*a(n-1)-96*a(n-2)+ 256*a(n-3)-256*a(n-4). - _Harvey P. Dale_, May 12 2011

%F a(n) = 8*(A038846(n-1)+8*A038846(n-2)), with A038846(-1)=0. - _Bruno Berselli_, Feb 12 2013

%F E.g.f.: 8*exp(4*x)*x*(1 + 8*x + 8*x^2). - _Stefano Spezia_, Sep 02 2024

%t Table[(n^3+n^2)4^n,{n, 20}] (* or *) LinearRecurrence[{16,-96,256,-256}, {8,192,2304,20480},20] (* _Harvey P. Dale_, May 12 2011 *)

%o (Magma) [(n^3+n^2)*4^n: n in [1..25]]; // _Vincenzo Librandi_, Feb 12 2013

%Y Cf. A036289, A038846, A128796.

%K nonn,easy

%O 1,1

%A _Mohammad K. Azarian_, May 01 2007