login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292073
Number of dominating sets in the n X n rook complement graph.
4
1, 9, 421, 64727, 33548731, 68719441881, 562949953225997, 18446744073708516927, 2417851639229258344138819, 1267650600228229401496677076985, 2658455991569831745807614120434020301, 22300745198530623141535718272648360902500919
OFFSET
1,2
COMMENTS
Non-dominating sets are just those that are contained in the union of a single row and column minus the intersecting vertex. - Andrew Howroyd, Sep 13 2017
LINKS
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, Rook Complement Graph
FORMULA
a(n) = 2^(n^2) - 2*n*(2^n - 2) + n^2 - n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 2*binomial(n,2)^2 - 1 for n > 1. - Andrew Howroyd, Sep 13 2017
MATHEMATICA
Table[If[n == 1, 1, 2^n^2 + (2^n (n - 2) - 4^(n - 1) n + (n - 1)^2 n/2 + 4) n - 1], {n, 20}]
PROG
(PARI) a(n) = if(n == 1, 1, 2^(n^2) - 2*n*(2^n - 2) + n^2 - n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 2*binomial(n, 2)^2 - 1); \\ Andrew Howroyd, Sep 13 2017
(Magma) [1] cat [2^(n^2)-2*n*(2^n-2)+n^2-n^2*(2^(n-1)-1)^2+ n^2*(n-1)^2-2*Binomial(n, 2)^2-1: n in [2..15]]; // Vincenzo Librandi, Mar 17 2018
CROSSREFS
Sequence in context: A091061 A024123 A218140 * A232249 A229843 A081481
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Sep 12 2017
EXTENSIONS
a(6)-a(12) from Andrew Howroyd, Sep 13 2017
STATUS
approved