login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of dominating sets in the n X n rook complement graph.
4

%I #31 Sep 08 2022 08:46:19

%S 1,9,421,64727,33548731,68719441881,562949953225997,

%T 18446744073708516927,2417851639229258344138819,

%U 1267650600228229401496677076985,2658455991569831745807614120434020301,22300745198530623141535718272648360902500919

%N Number of dominating sets in the n X n rook complement graph.

%C Non-dominating sets are just those that are contained in the union of a single row and column minus the intersecting vertex. - _Andrew Howroyd_, Sep 13 2017

%H Vincenzo Librandi, <a href="/A292073/b292073.txt">Table of n, a(n) for n = 1..50</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RookComplementGraph.html">Rook Complement Graph</a>

%F a(n) = 2^(n^2) - 2*n*(2^n - 2) + n^2 - n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 2*binomial(n,2)^2 - 1 for n > 1. - _Andrew Howroyd_, Sep 13 2017

%t Table[If[n == 1, 1, 2^n^2 + (2^n (n - 2) - 4^(n - 1) n + (n - 1)^2 n/2 + 4) n - 1], {n, 20}]

%o (PARI) a(n) = if(n == 1, 1, 2^(n^2) - 2*n*(2^n - 2) + n^2 - n^2*(2^(n-1)-1)^2 + n^2*(n-1)^2 - 2*binomial(n,2)^2 - 1); \\ _Andrew Howroyd_, Sep 13 2017

%o (Magma) [1] cat [2^(n^2)-2*n*(2^n-2)+n^2-n^2*(2^(n-1)-1)^2+ n^2*(n-1)^2-2*Binomial(n,2)^2-1: n in [2..15]]; // _Vincenzo Librandi_, Mar 17 2018

%Y Cf. A291623, A292074.

%K nonn

%O 1,2

%A _Eric W. Weisstein_, Sep 12 2017

%E a(6)-a(12) from _Andrew Howroyd_, Sep 13 2017