login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273767
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 913", based on the 5-celled von Neumann neighborhood.
0
1, 4, 48, 225, 961, 3969, 16129, 65025, 261121, 1046529, 4190209, 16769025, 67092481, 268402689, 1073676289, 4294836225
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Conjecture: Rules 921, 929, 937, 945 and 953 also generate this sequence. - Lars Blomberg, Jul 24 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjecture: a(n) = (2^(n+1) - 1)^2, n>2. - Lars Blomberg, Jul 24 2016
Conjectures from Colin Barker, Jul 24 2016: (Start)
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>5.
G.f.: (1-3*x+34*x^2-63*x^3+26*x^4+8*x^5) / ((1-x)*(1-2*x)*(1-4*x)).
(End)
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=913; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A273766.
Sequence in context: A002287 A273335 A275138 * A292074 A274729 A217153
KEYWORD
nonn,more
AUTHOR
Robert Price, May 29 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 24 2016
STATUS
approved